9 research outputs found

    Decoding the Transcriptome of Rice Seed During Development

    Get PDF
    Rice seed development is a continuous process wherein it undergoes complex molecular and tissue reprogramming. It is a collective effect of embryo and endosperm development, each of which undertakes its own developmental paths, with endosperm development significantly affecting embryo. Understanding the mechanistics of the regulatory networks administrating this process is the building block for any future research on grain yield and quality. High-throughput transcript profiling and small RNA profiling studies have proved useful in providing information about the molecular changes occurring in various tissues associated with seed development. Transcriptome sequencing studies have highlighted the significant genes and pathways that are operating during seed development. The involvement of TFs and hormones has also been implicated in regulating key aspects of seed development, including embryo patterning and seed maturation. This chapter will review the information provided by high-throughput sequencing studies on various aspects of rice seed development, highlighting the developmental complexities of embryo and endosperm

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p

    A rare case of Paclitaxel and/or Trastuzumab induced acute hepatic necrosis

    No full text
    Paclitaxel induced mild derangement of liver functions including bilirubin, alkaline phosphatase, and AST has been infrequently noticed in clinical trials. Contrary to Paclitaxel, hepatocellular injury, hepatitis, and liver tenderness are common laboratory and clinical findings with Trastuzumab. However, hepatic failure/necrosis secondary to Paclitaxel or Trastuzumab has never been reported in literature. A 62-year-old lady, previously healthy, was treated with adjuvant therapy for left breast stage II, high grade invasive ductal carcinoma which was node negative, oestrogen receptor negative, progesterone receptor positive, and HER2 receptor positive. After modified radical mastectomy and axillary clearance, she finished four cycles of Doxorubicin/Cyclophosphamide chemotherapy and then commenced on Paclitaxel/Trastuzumab combination chemotherapy. Within twelve hours of first dose of Paclitaxel/Trastuzumab therapy, patient required hospital admission for acute onset respiratory failure. Patient died within 36 hours of therapy and autopsy was suggestive of acute hepatic necrosis without any other significant findings. Detailed investigations were not carried out as event was quick with rapid deterioration. There was no history of prior liver pathology/injury and preliminary investigations for major organ involvement were unremarkable. As per our knowledge, Paclitaxel and/or Trastuzumab induced acute hepatic necrosis has never been reported in literature before, hence difficult to predict

    Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size

    No full text
    NACs are plant-specific transcription factors (TFs) involved in multiple aspects of development and stress. In rice, three NAC TF encoding genes, namely ONAC020, ONAC026 and ONAC023 express specifically during seed development, at extremely high levels. They exhibit significantly strong association with seed size/weight with the sequence variations located in the upstream regulatory region. Concomitantly, their expression pattern/levels during seed development vary amongst different accessions with variation in seed size. The alterations in the promoter sequences of the three genes, amongst the five rice accessions, correlate with the expression levels to a certain extent only. In terms of transcriptional properties, the three NAC TFs can activate and/or suppress downstream genes, though to different extents. Only ONAC026 is localized to the nucleus while ONAC020 and ONAC023 are targeted to the ER and cytoplasm, respectively. Interestingly, these two proteins interact with ONAC026 and the dimers localize in the nucleus. Trans-splicing between ONAC020 and ONAC026 results in three additional forms of ONAC020. The transcriptional properties including activation, repression, subcellular localization and heterodimerization of trans-spliced forms of ONAC020 and ONAC026 are different, indicating towards their role as competitors. The analysis presented in this paper helps to conclude that the three NAC genes, which are associated with seed size, have independent as well as overlapping roles during the process and can be exploited as potential targets for crop improvement

    Analysis of Rice Proteins with DLN Repressor Motif/S

    No full text
    Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice

    Statistics pertaining to HPRD growth, experimental types for protein–protein interactions and a breakdown of PTMs

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Human protein reference database—2006 update"</p><p>Nucleic Acids Research 2005;34(Database issue):D411-D414.</p><p>Published online 28 Dec 2005</p><p>PMCID:PMC1347503.</p><p>© The Author 2006. Published by Oxford University Press. All rights reserved</p> () Growth of HPRD over the last 3 years with respect to protein entries, protein–protein interactions and PTMs. () Distribution of protein–protein interactions in HPRD based on the type of the experimental method. () Distribution of various types of PTMs in HPRD. The percentage of the respective PTM is indicated only when it is greater than or equal to 2
    corecore