869 research outputs found

    Can the X(3872) be a 1^{++} four-quark state?

    Get PDF
    We use QCD spectral sum rules to test the nature of the meson X(3872), assumed to be an exotic four-quark (c\bar{c}q\bar{q}) state with J^{PC}=1^{++}. For definiteness, we work with the current proposed recently by Maiani et al [1], at leading order in \alpha_s, consider the contributions of higher dimension condensates and keep terms which are linear in the light quark mass m_q. We find M_X=(3925+- 127) MeV which is compatible, within the errors, with he experimental candidate X(3872), while the SU(3) breaking-terms lead to an unusual mass-splitting M_{X^{s}}-M_X=- (61+-30) MeV. The mass-difference between the neutral states due to isospin violation of about (2.6-3.9) MeV is much smaller than the value (8+-3) MeV proposed in [1]. For the b-quark, we predict M_{X_b}= (10144+-106) MeV for the X_b(b\bar{b}q \bar{q}), which is much below the {\bar B}B* threshold in contrast to the {\bar B}B* molecule prediction [2], and for the X_b^s(b\bar{b}s \bar{s}), a mass-splitting M_{X^s_{b}}-M_{X_b}=-(121+-182) MeV. Our analysis also indicates that the mass-splitting between the ground state and the radial excitation of about (225~250) MeV is much smaller than in the case of ordinary mesons and is (within the errors) flavour-independent. We also extract the decay constants, analogous to f_\pi, of such mesons, which are useful for further studies of their leptonic and hadronic decay widths. The uncertainties of our estimates are mainly due to the ones from the c and b quark masses.Comment: 16 pages, 10 figures. Version to appear in Phys. Rev.

    Mimicking Nanoribbon Behavior Using a Graphene Layer on SiC

    Full text link
    We propose a natural way to create quantum-confined regions in graphene in a system that allows large-scale device integration. We show, using first-principles calculations, that a single graphene layer on a trenched region of [0001ˉ][000\bar{1}] SiCSiC mimics i)the energy bands around the Fermi level and ii) the magnetic properties of free-standing graphene nanoribbons. Depending on the trench direction, either zigzag or armchair nanoribbons are mimicked. This behavior occurs because a single graphene layer over a SiCSiC surface loses the graphene-like properties, which are restored solely over the trenches, providing in this way a confined strip region.Comment: 4 pages, 4 figure

    Past production constrains current energy demands: persistent scaling in global energy consumption and implications for climate change mitigation

    Full text link
    Climate change has become intertwined with the global economy. Here, we describe the importance of inertia to continued growth in energy consumption. Drawing from thermodynamic arguments, and using 38 years of available statistics between 1980 to 2017, we find a persistent time-independent scaling between the historical time integral WW of world inflation-adjusted economic production YY, or W(t)=∫0tY(t′)dt′W\left(t\right) = \int_0^t Y\left(t'\right)dt', and current rates of world primary energy consumption E\mathcal E, such that λ=E/W=5.9±0.1\lambda = \mathcal{E}/W = 5.9\pm0.1 Gigawatts per trillion 2010 US dollars. This empirical result implies that population expansion is a symptom rather than a cause of the current exponential rise in E\mathcal E and carbon dioxide emissions CC, and that it is past innovation of economic production efficiency Y/EY/\mathcal{E} that has been the primary driver of growth, at predicted rates that agree well with data. Options for stabilizing CC are then limited to rapid decarbonization of E\mathcal E through sustained implementation of over one Gigawatt of renewable or nuclear power capacity per day. Alternatively, assuming continued reliance on fossil fuels, civilization could shift to a steady-state economy that devotes economic production exclusively to maintenance rather than expansion. If this were instituted immediately, continual energy consumption would still be required, so atmospheric carbon dioxide concentrations would not balance natural sinks until concentrations exceeded 500 ppmv, and double pre-industrial levels if the steady-state was attained by 2030
    • …
    corecore