3,443 research outputs found
Test beam Characterizations of 3D Silicon Pixel detectors
3D silicon detectors are characterized by cylindrical electrodes
perpendicular to the surface and penetrating into the bulk material in contrast
to standard Si detectors with planar electrodes on its top and bottom. This
geometry renders them particularly interesting to be used in environments where
standard silicon detectors have limitations, such as for example the radiation
environment expected in an LHC upgrade. For the first time, several 3D sensors
were assembled as hybrid pixel detectors using the ATLAS-pixel front-end chip
and readout electronics. Devices with different electrode configurations have
been characterized in a 100 GeV pion beam at the CERN SPS. Here we report
results on unirradiated devices with three 3D electrodes per 50 x 400 um2 pixel
area. Full charge collection is obtained already with comparatively low bias
voltages around 10 V. Spatial resolution with binary readout is obtained as
expected from the cell dimensions. Efficiencies of 95.9% +- 0.1 % for tracks
parallel to the electrodes and of 99.9% +- 0.1 % at 15 degrees are measured.
The homogeneity of the efficiency over the pixel area and charge sharing are
characterized.Comment: 5 pages, 7 figure
BLUF Domain Function Does Not Require a Metastable Radical Intermediate State
BLUF
(blue light using flavin) domain proteins are an important
family of blue light-sensing proteins which control a wide variety
of functions in cells. The primary light-activated step in the BLUF
domain is not yet established. A number of experimental and theoretical
studies points to a role for photoinduced electron transfer (PET)
between a highly conserved tyrosine and the flavin chromophore to
form a radical intermediate state. Here we investigate the role of
PET in three different BLUF proteins, using ultrafast broadband transient
infrared spectroscopy. We characterize and identify infrared active
marker modes for excited and ground state species and use them to
record photochemical dynamics in the proteins. We also generate mutants
which unambiguously show PET and, through isotope labeling of the
protein and the chromophore, are able to assign modes characteristic
of both flavin and protein radical states. We find that these radical
intermediates are not observed in two of the three BLUF domains studied,
casting doubt on the importance of the formation of a population of
radical intermediates in the BLUF photocycle. Further, unnatural amino
acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines,
thus modifying the driving force for the proposed electron transfer
reaction; the rate changes observed are also not consistent with a
PET mechanism. Thus, while intermediates of PET reactions can be observed
in BLUF proteins they are not correlated with photoactivity, suggesting
that radical intermediates are not central to their operation. Alternative
nonradical pathways including a keto–enol tautomerization induced
by electronic excitation of the flavin ring are considered
Search for hidden-photon dark matter with the FUNK experiment
Many extensions of the Standard Model of particle physics predict a parallel
sector of a new U(1) symmetry, giving rise to hidden photons. These hidden
photons are candidate particles for cold dark matter. They are expected to
kinetically mix with regular photons, which leads to a tiny oscillating
electric-field component accompanying dark matter particles. A conducting
surface can convert such dark matter particles into photons which are emitted
almost perpendicularly to the surface. The corresponding photon frequency
follows from the mass of the hidden photons. In this contribution we present a
preliminary result on a hidden photon search in the visible and near-UV
wavelength range that was done with a large, 14 m2 spherical metallic mirror
and discuss future dark matter searches in the eV and sub-eV range by
application of different detectors for electromagnetic radiation.Comment: Contribution to the 35th International Cosmic Ray Conference
ICRC2017, 10 to 20 July, 2017, Bexco, Busan, Korea. arXiv admin note: text
overlap with arXiv:1711.0296
Machine learning for automatic prediction of the quality of electrophysiological recordings
The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions by a machine learning approach. We define 16 features, such as spike height and width, select the most informative ones using a wrapper method and train a classifier to reproduce the judgement of one of our expert electrophysiologists. Generalisation performance is then assessed on unseen data, classified by the same or by another expert. We observe that the learning machine can be equally, if not more, consistent in its judgements as individual experts amongst each other. Best performance is achieved for a limited number of informative features; the optimal feature set being different from one data set to another. With 80–90% of correct judgements, the performance of the system is very promising within the data sets of each expert but judgments are less reliable when it is used across sets of recordings from different experts. We conclude that the proposed approach is relevant to the selection of electrophysiological recordings, provided parameters are adjusted to different types of experiments and to individual experimenters
Search for dark matter in the hidden-photon sector with a large spherical mirror
If dark matter consists of hidden-sector photons which kinetically mix with
regular photons, a tiny oscillating electric-field component is present
wherever we have dark matter. In the surface of conducting materials this
induces a small probability to emit single photons almost perpendicular to the
surface, with the corresponding photon frequency matching the mass of the
hidden photons. We report on a construction of an experimental setup with a
large ~14 m2 spherical metallic mirror that will allow for searches of
hidden-photon dark matter in the eV and sub-eV range by application of
different electromagnetic radiation detectors. We discuss sensitivity and
accessible regions in the dark matter parameter space.Comment: 9 pages, proceeding of the 34th International Cosmic Ray Conference
(ICRC), July 30 - August 6, 2015, The Hague, The Netherland
Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado
We describe an experiment, located in south-east Colorado, USA, that measured
aerosol optical depth profiles using two Lidar techniques. Two independent
detectors measured scattered light from a vertical UV laser beam. One detector,
located at the laser site, measured light via the inelastic Raman
backscattering process. This is a common method used in atmospheric science for
measuring aerosol optical depth profiles. The other detector, located
approximately 40km distant, viewed the laser beam from the side. This detector
featured a 3.5m2 mirror and measured elastically scattered light in a bistatic
Lidar configuration following the method used at the Pierre Auger cosmic ray
observatory. The goal of this experiment was to assess and improve methods to
measure atmospheric clarity, specifically aerosol optical depth profiles, for
cosmic ray UV fluorescence detectors that use the atmosphere as a giant
calorimeter. The experiment collected data from September 2010 to July 2011
under varying conditions of aerosol loading. We describe the instruments and
techniques and compare the aerosol optical depth profiles measured by the Raman
and bistatic Lidar detectors.Comment: 34 pages, 16 figure
- …
