134 research outputs found

    Transit reliant neighborhoods

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2000.Includes bibliographical references (leaves 53-54).Cities are all about people and places. Travel occurs because people want to get to places - places of work, places of residence, places of shopping and so on. Hence, it is people and places that are more important, not transportation. Ideally, we want to minimize travel so we can spend more time socializing , at desired destinations, rather than on transit. However, the paradigm of city design seems to have shifted over the years - from people and places to automobiles. The cumulative effects of planning for efficient movement of the car and enhanced automobility have revealed themselves in the form of urban sprawl, energy depletion, air and noise pollution, climate change, road fatalities, and segregation of people by class and race. For the sake of social equity and sustainability, it is thus important to increase reliance on transit services. However, merely infusing transit services into an auto-based environment is not likely to reap many rewards or radically change behavior. The fact that availability of subsidized transit services (in almost all regions of the US) has not lured the middle class out of their cars indicates a loophole in the present understanding of its usability. Many argue that one can only lessen the use of car by demand-management strategies, such as constraints on parking, increase in automobile and gasoline prices, and guaranteed rides home for car-poolers. Does this imply that in the absence of punitive pricing on automobile usage, the transit services are doomed to fail? This Thesis argues that transit ridership depends more on the way transit service relates to its location - and if we want to enhance transit usage, the 'transit service'-'urban form ' nexus matters. Based on this premise, the thesis explores how urban form influences transit usage and how development should be directed in order to increase reliance on mass transit.by by Kiran B. Mathema.S.M

    Acquisition of second-line drug resistance and extensive drug resistance during recent transmission of Mycobacterium tuberculosis in rural China

    Get PDF
    AbstractMultidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB

    Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strain.

    Get PDF
    A distinct branch of the Mycobacterium tuberculosis W phylogenetic lineage (W14 group) has been identified and characterized by various genotyping techniques. The W14 group comprises three strain variants: W14, W23, and W26, which accounted for 26 clinical isolates from the New York City metropolitan area. The W14 group shares a unique IS6110 hybridizing banding motif as well as distinct polymorphic GC-rich repetitive sequence and variable number tandem repeat patterns. All W14 group members have high levels of streptomycin resistance. When the streptomycin resistance rpsL target gene was sequenced, all members of this strain family had an identical mutation in codon 43. Patients infected with the W14 group were primarily of non- Hispanic black origin (77%); all were US-born. Including HIV positivity, 84% of the patients had at least one known risk factor for tuberculosis

    Identification of moaA3 gene in patient isolates of Mycobacterium tuberculosis in Kerala, which is absent in M. tuberculosis H37Rv and H37Ra

    Get PDF
    BACKGROUND: Tuberculosis is endemic to developing countries like India. Though the whole genome sequences of the type strain M. tuberculosis H37Rv and the clinical strain M. tuberculosis CDC1551 are available, the clinical isolates from India have not been studied extensively at the genome level. This study was carried out in order to have a better understanding of isolates from Kerala, a state in southern India. RESULTS: A PCR based strategy was followed making use of the deletion region primers to understand the genome level differences between the type strain H37Rv and the clinical isolates of M. tuberculosis from Kerala. PCR analysis of patient isolates using RD1 region primers revealed the amplification of a 386 bp region, in addition to the expected 652 bp amplicon. Southern hybridization of genomic DNA with the 386 bp amplicon confirmed the presence of this new region in a majority of the patient isolates from Kerala. Sequence comparison of this amplicon showed close homology with the moaA3 gene of M. bovis. In M. bovis this gene is present in the RvD5 region, an IS6110 mediated deletion that is absent in M. tuberculosis H37Rv. CONCLUSION: This study demonstrates the presence of moaA3 gene, that is absent in M. tuberculosis H37Rv and H37Ra, in a large number of local isolates. Whether the moaA3 gene provides any specific advantage to the field isolates of the pathogen is unclear. Field strains from Kerala have fewer IS6110 sequences and therefore are likely to have fewer IS6110 dependent rearrangements. But as deletions and insertions account for much of the genomic diversity of M. tuberculosis, the mechanisms of formation of sequence polymorphisms in the local isolates should be further examined. These results suggest that studies should focus on strains from endemic areas to understand the complexities of this pathogen

    Molecular Epidemiology of HIV-Associated Tuberculosis in Dar es Salaam, Tanzania: Strain Predominance, Clustering, and Polyclonal Disease.

    Get PDF
    Molecular typing of Mycobacterium tuberculosis can be used to elucidate the epidemiology of tuberculosis, including the rates of clustering, the frequency of polyclonal disease, and the distribution of genotypic families. We performed IS6110 typing and spoligotyping on M. tuberculosis strains isolated from HIV-infected subjects at baseline or during follow-up in the DarDar Trial in Tanzania and on selected community isolates. Clustering occurred in 203 (74%) of 275 subjects: 124 (80%) of 155 HIV-infected subjects with baseline isolates, 56 (69%) of 81 HIV-infected subjects with endpoint isolates, and 23 (59%) of 39 community controls. Overall, 113 (41%) subjects had an isolate representing the East Indian "GD" family. The rate of clustering was similar among vaccine and placebo recipients and among subjects with or without cellular immune responses to mycobacterial antigens. Polyclonal disease was detected in 6 (43%) of 14 patients with multiple specimens typed. Most cases of HIV-associated tuberculosis among subjects from this study in Dar es Salaam resulted from recently acquired infection. Polyclonal infection was detected and isolates representing the East Indian GD strain family were the most common

    Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping is a powerful tool for unraveling clonally complex <it>Mycobacterium tuberculosis </it>(MTB) strains and detection of transmission patterns. Using MIRU-VNTR, MTB genotypes and their transmission patterns among patients with new and active pulmonary tuberculosis (PTB) in Kawempe municipality in Kampala, Uganda was determined.</p> <p>Results</p> <p>MIRU-VNTR genotyping was performed by PCR-amplification of 15 MTB-MIRU loci from 113 cultured specimens from 113 PTB patients (one culture sample per patient). To determine lineages, the genotypes were entered into the MIRU-VNTR<it>plus </it>database [<url>http://www.miru-vntrplus.org/</url>] as numerical codes corresponding to the number of alleles at each locus. Ten different lineages were obtained: Uganda II (40% of specimens), Uganda I (14%), LAM (6%), Delhi/CAS (3%), Haarlem (3%), Beijing (3%), Cameroon (3%), EAI (2%), TUR (2%) and S (1%). Uganda I and Uganda II were the most predominant genotypes. Genotypes for 29 isolates (26%) did not match any strain in the database and were considered unique. There was high diversity of MIRU-VNTR genotypes, with a total of 94 distinct patterns. Thirty four isolates grouped into 15 distinct clusters each with two to four isolates. Eight households had similar MTB strains for both index and contact cases, indicating possible transmission.</p> <p>Conclusion</p> <p>MIRU-VNTR genotyping revealed high MTB strain diversity with low clustering in Kawempe municipality. The technique has a high discriminatory power for genotyping MTB strains in Uganda.</p

    Hospital use of systemic antifungal drugs

    Get PDF
    BACKGROUND: Sales data indicate a major increase in the prescription of antifungal drugs in the last two decades. Many new agents for systemic use that only recently have become available are likely to be prescribed intensively in acute care hospitals. Sales data do not adequately describe the developments of drug use density. Given the concerns about the potential emergence of antifungal drug resistance, data on drug use density, however, may be valuable and are needed for analyses of the relationship between drug use and antifungal resistance. METHODS: Hospital pharmacy records for the years 2001 to 2003 were evaluated, and the number of prescribed daily doses (PDD, defined according to locally used doses) per 100 patient days were calculated to compare systemic antifungal drug use density in different medical and surgical service areas between five state university hospitals. RESULTS: The 3-year averages in recent antifungal drug use for the five hospitals ranged between 8.6 and 29.3 PDD/100 patient days in the medical services (including subspecialties and intensive care), and between 1.1 and 4.0 PDD/100 patient days in the surgical services, respectively. In all five hospitals, systemic antifungal drug use was higher in the hematology-oncology service areas (mean, 48.4, range, 24 to 101 PDD/100 patient days, data for the year 2003) than in the medical intensive care units (mean, 18.3, range, 10 to 33 PDD/100) or in the surgical intensive care units (mean, 10.7, range, 6 to 18 PDD/100). Fluconazole was the most prescribed antifungal drug in all areas. In 2003, amphotericin B consumption had declined to 3 PDD/100 in the hematology-oncology areas while voriconazole use had increased to 10 PDD/100 in 2003. CONCLUSION: Hematology-oncology services are intense antifungal drug prescribing areas. Fluconazole and other azol antifungal drugs are the most prescribed drugs in all patient care areas while amphotericin B use has considerably decreased. The data may be useful as a benchmark for focused interventions to improve prescribing quality

    Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping

    Get PDF
    Background: Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings: In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing M<8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts <= 42 cycles in internal transcribed spacer-real time PCR. Conclusions: These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available (http://ifr48.timone.univ-mrs.fr/MST_MTuberculosis/mst)
    corecore