21 research outputs found

    Magnetic anisotropies and general on--site Coulomb interactions in the cuprates

    Get PDF
    This paper derives the anisotropic superexchange interactions from a Hubbard model for excitations within the copper 3d band and the oxygen 2p band of the undoped insulating cuprates. We extend the recent calculation of Yildirim et al. [Phys. Rev. B {\bf VV}, pp, 1995] in order to include the most general on--site Coulomb interactions (including those which involve more than two orbitals) when two holes occupy the same site. Our general results apply when the oxygen ions surrounding the copper ions form an octahedron which has tetragonal symmetry (but may be rotated as in lanthanum cuprate). For the tetragonal cuprates we obtain an easy--plane anisotropy in good agreement with experimental values. We predict the magnitude of the small in--plane anisoComment: 25 pages, revte

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989
    corecore