2 research outputs found

    Grain structure orientational change in Ti6Al4V alloys induced by sea water quenching and novel stress relief annealing process

    Get PDF
    We report on the microstructures and properties of Ti6Al4V alloys, which were achieved upon quenching in sea water medium with potential high cooling rate. The Ti6Al4V alloys were quenched at 1000 and 1100 â—¦C, respectively. Moreover, the effect of post-quenching annealing performed at 900 â—¦C was analyzed. As a result, the quenched alloy experienced surface thermal stress, due to rapid cooling and thermal shock, due to exposure to high temperature annealing

    Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review

    No full text
    Over the past decade, relentless efforts have brought lightweight high-temperature γ-TiAl-based intermetallic alloys into real commercialisation. The materials have found their place in General Electric’s (GE) high bypass turbofan aircraft engines for the Boeing 787 as well as in the PW1100GTF engines for low-pressure turbine (LPT) blades. In service, the alloys are required to withstand hostile environments dominated by cyclic stresses or strains. Therefore, to enhance the fatigue resistance of the alloys, a clear understanding of the alloys’ response to fatigue loading is pivotal. In the present review, a detailed discussion about the low-cycle fatigue (LCF) behaviour of γ-TiAl-based alloys in terms of crack initiation, propagation and fracture mechanisms, and the influence of temperature and environment on cyclic deformation mechanisms and the resulting fatigue life has been presented. Furthermore, a comprehensive discussion about modelling and prediction of the fatigue property of these alloys with regard to the initiation and propagation lives as well as the total fatigue life has been provided. Moreover, effective methods of optimising the microstructures of γ-TiAl-based alloys to ensure improved LCF behaviour have been elucidated
    corecore