6 research outputs found

    PEGylated rosin derivatives: Novel microencapsulating materials for sustained drug delivery

    No full text
    The aim of this study was to investigate PEGylated rosin derivatives (PRDs) as microencapsulating materials for sustained drug delivery. PRDs (D1, D2, and D3) composed of a constant weight of rosin and varied amounts of polyethylene glycol (PEG) 400 and maleic anhydride were synthesized in the laboratory. Microparticles were prepared by the O/O solvent evaporation technique using the acetone/paraffin system. Diclofenac sodium (DFS) and diltiazem hydrochloride (DLTZ) were used as model drugs. The effect of the type of PRD, drug, PRD:drug ratio, viscosity of external phase, stirring speed, concentration of magnesium stearate (droplet stabilizer), and method of preparation on particle size, drug loading, and drug release profiles of microparticles was investigated. PRDs could produce discrete and spherical microspheres (with DFS) and microcapsules (with DLTZ). The drug loading value for microparticles was found to be in the range of 37.21% to 87.90%. The microparticle size range was 14 to 36 μm. The particle size and drug loadings of microparticles were substantially affected by the concentration of magnesium stearate and the type of drug, respectively. Most of the formulations could sustain the DFS and DLTZ release for 20 hours. DFS and DLTZ release from PRD microparticles followed Hixson-Crowell and first-order kinetics, respectively. The results suggest that PRDs can be used successfully to prepare discrete and spherical microparticles with DFS and DLTZ for sustained drug delivery

    Formulation of anastrozole microparticles as biodegradable anticancer drug carriers

    No full text
    The purpose of this study was to develop poly(d,1-lactic-coglycolic acid) (PLGA)-based anastrozole microparticles for treatment of breast cancer. An emulsion/extraction method was used to prepare anastrozole sustained-release PLGA-based biodegradable microspheres. Gas chromatography with mass spectroscopy detection was used for the quantitation of the drug throughout the studies. Microparticles were formulated and characterized in terms of encapsulation efficiency, particle size distribution, surface morphology, and drug release profile. Preparative variables such as concentrations of stabilizer, drug-polymer ratio polymer viscosity, stirring rate, and ratio of internal to external phases were found to be important factors for the preparation of anastrozole-loaded PLGA microparticles. Fourier transform infrared with attenuated total reflectance (FTIR-ATR) analysis and differential scanning calorimetry (DSC) were employed to determine any interactions between drug and polymer. An attempt was made to fit the data to various dissolution kinetics models for multiparticulate systems, including the zero order, first order, square root of time kinetics, and biphasic models. The FTIR-ATR studies revealed no chemical interaction between the drug and the polymer. DSC results indicated that the anastrozole trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. The highest correlation coefficients were obtained for the Higuchi model, suggesting a diffusion mechanism for the drug release. The results demonstrated that anastrozole microparticles with PLGA could be an alternative delivery method for the long-term treatment of breast cancer
    corecore