3,199 research outputs found

    Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms

    Full text link
    By incorporating the zero-point energy contribution we derive simple and accurate extensions of the usual Thomas-Fermi (TF) expressions for the ground-state properties of trapped Bose-Einstein condensates that remain valid for an arbitrary number of atoms in the mean-field regime. Specifically, we obtain approximate analytical expressions for the ground-state properties of spherical, cigar-shaped, and disk-shaped condensates that reduce to the correct analytical formulas in both the TF and the perturbative regimes, and remain valid and accurate in between these two limiting cases. Mean-field quasi-1D and -2D condensates appear as simple particular cases of our formulation. The validity of our results is corroborated by an independent numerical computation based on the 3D Gross-Pitaevskii equation.Comment: 5 pages, 3 figures. Final version published in Phys. Rev.

    Three-dimensional gap solitons in Bose-Einstein condensates supported by one-dimensional optical lattices

    Full text link
    We study fundamental and compound gap solitons (GSs) of matter waves in one-dimensional (1D) optical lattices (OLs) in a three-dimensional (3D) weak-radial-confinement regime, which corresponds to realistic experimental conditions in Bose-Einstein condensates (BECs). In this regime GSs exhibit nontrivial radial structures. Associated with each 3D linear spectral band exists a family of fundamental gap solitons that share a similar transverse structure with the Bloch waves of the corresponding linear band. GSs with embedded vorticity mm may exist \emph{inside} bands corresponding to other values of mm. Stable GSs, both fundamental and compound ones (including vortex solitons), are those which originate from the bands with lowest axial and radial quantum numbers. These findings suggest a scenario for the experimental generation of robust GSs in 3D settings.Comment: 5 pages, 5 figures; v2: matches published versio

    Dynamical evolution of a doubly-quantized vortex imprinted in a Bose-Einstein Condensate

    Full text link
    The recent experiment by Y. Shin \emph{et al.} [Phys. Rev. Lett. \textbf{93}, 160406 (2004)] on the decay of a doubly quantized vortex imprinted in 23^{23}% Na condensates is analyzed by numerically solving the Gross-Pitaevskii equation. Our results, which are in very good quantitative agreement with the experiment, demonstrate that the vortex decay is mainly a consequence of dynamical instability. Despite apparent contradictions, the local density approach is consistent with the experimental results. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that, for large condensates, the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate, regardless of its size.Comment: 5 pages, 4 figure

    Challenging Filipino Colonial Mentality with Philippine Art

    Get PDF
    For 350 years, the Philippines was colonized by Spain and the United States. The Philippines became a sovereign nation in 1946 yet, fifty years later, colonial teachings continue to oppress Filipinos due to their colonial mentality (CM.) CM is an internalized oppression among Filipinos in which they experience an automatic preference for anything Western—European or U.S. American—and rejection of anything Filipino. Although Filipinos show signs of a CM, there are Filipinos who are challenging CM by engaging in Philippine art. Philippine art is defined as Filipino-made visual art, literature, music, and dance intended to promote Philippine culture. This research project analyzes the Philippine art community and discovers that those involved in the Philippine art community are conscious of how colonialism dictates standards today. They also actively challenge colonial affects by creating and/or supporting artists whom promote Filipino cultures. However, Philippine art’s ability to decrease CM among Filipinos is not evenly accessible among classes

    Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates

    Full text link
    By applying the standard adiabatic approximation and using the accurate analytical expression for the corresponding local chemical potential obtained in our previous work [Phys. Rev. A \textbf{75}, 063610 (2007)] we derive an effective 1D equation that governs the axial dynamics of mean-field cigar-shaped condensates with repulsive interatomic interactions, accounting accurately for the contribution from the transverse degrees of freedom. This equation, which is more simple than previous proposals, is also more accurate. Moreover, it allows treating condensates containing an axisymmetric vortex with no additional cost. Our effective equation also has the correct limit in both the quasi-1D mean-field regime and the Thomas-Fermi regime and permits one to derive fully analytical expressions for ground-state properties such as the chemical potential, axial length, axial density profile, and local sound velocity. These analytical expressions remain valid and accurate in between the above two extreme regimes. Following the same procedure we also derive an effective 2D equation that governs the transverse dynamics of mean-field disk-shaped condensates. This equation, which also has the correct limit in both the quasi-2D and the Thomas-Fermi regime, is again more simple and accurate than previous proposals. We have checked the validity of our equations by numerically solving the full 3D Gross-Pitaevskii equation.Comment: 11 pages, 7 figures; Final version published in Phys. Rev. A; Manuscript put in the archive and submitted to Phys. Rev. A on 17 July 200

    Ground-state properties of trapped Bose-Einstein condensates: Extension of the Thomas-Fermi approximation

    Full text link
    We derive general approximate formulas that provide with remarkable accuracy the ground-state properties of any mean-field scalar Bose-Einstein condensate with short-range repulsive interatomic interactions, confined in arbitrary cylindrically symmetric harmonic traps. Our formulation is even applicable for condensates containing a multiply quantized axisymmetric vortex. We have checked the validity of our formulas by numerically solving the 3D Gross-Pitaevskii equation.Comment: 9 pages, 6 figures. Final version published in Phys. Rev. A. New formulas for the local sound velocity of cigar-shaped and disk-shaped condensates have been obtained. This paper generalizes our previous work cond-mat/070169

    Gap solitons in elongated geometries: the one-dimensional Gross-Pitaevskii equation and beyond

    Full text link
    We report results of a systematic analysis of matter-wave gap solitons (GSs) in three-dimensional self-repulsive Bose-Einstein condensates (BECs) loaded into a combination of a cigar-shaped trap and axial optical-lattice (OL) potential. Basic cases of the strong, intermediate, and weak radial (transverse) confinement are considered, as well as settings with shallow and deep OL potentials. Only in the case of the shallow lattice combined with tight radial confinement, which actually has little relevance to realistic experimental conditions, does the usual one-dimensional (1D) cubic Gross-Pitaevskii equation (GPE) furnish a sufficiently accurate description of GSs. However, the effective 1D equation with the nonpolynomial nonlinearity, derived in Ref. [Phys. Rev. A \textbf{77}, 013617 (2008)], provides for quite an accurate approximation for the GSs in all cases, including the situation with weak transverse confinement, when the soliton's shape includes a considerable contribution from higher-order transverse modes, in addition to the usual ground-state wave function of the respective harmonic oscillator. Both fundamental GSs and their multipeak bound states are considered. The stability is analyzed by means of systematic simulations. It is concluded that almost all the fundamental GSs are stable, while their bound states may be stable if the underlying OL potential is deep enough.Comment: 14 pages, 12 figures; v2: matches published versio

    New analysis method for continuous base-flow and availability of water resources based on Parallel Linear Reservoir models

    Get PDF
    Water flows in the hydrosphere through a tangled and tortuous labyrinth of ways that is the hydrological cycle. Flow separation models are an attempt to group such complexity of paths into a few components of flow and storage so as to reflect the overall behaviour of a basin. A new method of analysis and separation of flow components, based on equations of dynamic relations between Linear Reservoirs connected in Parallel (PLR models), is developed in this article. A synthesis of models based on mathematical filter equations is carried out in order to make comparisons with the proposed model. Reference is also made to the methodology of adjustment and calibration of the PLR models based on the recession curves of the real hydrographs. The models are tested with the continuous register of a basin located in the northeast of Spain. The simulations are carried out with two reservoir models (2R models), three reservoirs (3R models) and with a mathematical filter model to compare the results. With the results of the models, flow duration curves (FDCs) and storage duration curves (SDCs) were elaborated, thus allowing assessment of the origin of the water resources of the basin, a guarantee of their regulation and availability, the dynamic storage in the catchment, residence times and other features
    • …
    corecore