8 research outputs found

    Single mode and polarization independence in the strained silicon-on-insulator rib waveguides

    No full text
    In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator (SOI) rib waveguide. Single mode and birefringence free conditions in these relatively small waveguides are discussed and the influence of the top oxide cladding stress is analyzed. Field profiles for a wide range of waveguide cross section shapes and dimensions are systematically considered. Design guidelines for this type of SOI waveguides are presented

    Charge carrier recombination in the ITO/PEDOT:PSS/MEH-PPV/Al photodetector

    No full text
    In this paper we investigate charge carrier recombination processes in polymer based photodetector ITO/PEDOT:PSS/MEH-PPV/Al. The major carriers are the hole polarons created by the photoexcitation in the active MEH-PPV film. The model used in this paper is based on the continuity equation and drift-diffusion equation for hole polarons. We assume the Poole-Frenkel expression for field dependence of the hole polaron mobility. The internal quantum efficiency dependence on incident photon flux density, incident light wavelength and applied electric field is included in the model. The simulated photocurrent density spectra for two different, assumed, recombination mechanisms, linear (monomolecular) and square (bimolecular) is compared with our experimental results. The bimolecular recombination mechanism applied in our model is assumed to be of Langevin type. The agreement between the measured and the calculated data unambiguously indicate that the hole polaron recombination mechanism in the MEH-PPV film is bimolecular with bimolecular rate constant depending on the external electric field. For the established recombination mechanism the theoretical prediction of the photocurrent density spectra shows excellent agreement with the measured spectra in wide range of inverse bias voltages (from 0 to -8 V)

    Repeated passing principle for propagation in optical resonators

    No full text
    In this paper we make comparison between a well-known theoretical model of light propagation through racetrack resonator and experimentally obtained results. Observed differences are studied and some original modifications are made in the existing model so as to achieve better alignment with experiment. The influence of several geometric parameters on racetrackā€™s response is used for further adjustments to be performed. This procedure opens up the possibility to estimate the free spectral range and resonant wavelength for different geometric parameters and consequently to predict resonator functionality and working conditions, as well as functionality of complex photonic devices based on resonant structures

    Rib waveguides for mid-infrared silicon photonics

    Get PDF
    Design rules for both single-mode and polarization-independent strained silicon-on-insulator rib waveguides at the wavelength of 3.39 Āµm are presented for the first time to our knowledge. Waveguide geometries with different parameters, such as waveguide height, rib width, etch depth, top oxide cover thickness and sidewall angle, have been studied in order to investigate and define design rules that will make devices suitable for mid-IR applications. Chebyshev bivariate interpolation with a standard deviation of less than 1% has been used to represent the zero-birefringence surface. Experimental results for the upper cladding stress level have been used to determine the influence of top oxide cover thickness and different levels of upper cladding stress on waveguide characteristics. Finally, the polarization-insensitive and single-mode locus is presented for different waveguide heights

    Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    No full text
    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 mu m, pulse length of 100 ns and fluence of similar to 17 J/cm(2) which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N-2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect

    Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering

    Get PDF
    There is a trend towards miniaturization of silicon photonic circuits due to superior performance and small cost. Design rules that must be imposed on the geometry of optical waveguides to make them behave as polarization-independent and singlemode devices are well known for waveguides with relatively large cross sections and for some small cross-sectional rib waveguides with vertical sidewalls and an air top cladding. The influence of the top oxide cover on waveguide birefringence was analyzed recently, but only for relatively large cross-sectional waveguides. This paper reports simulations for both single-mode and polarization-independent behavior for small cross-sectional waveguides with variable rib width, etch depth, top oxide cover thickness, and sidewall angle. The results show that the stress-induced effects must be taken into account to satisfy both requirements. Design rules to maintain birefringence-free operation and to satisfy single-mode behavior for small rib silicon-on-insulator (SOI) waveguides are presented
    corecore