4 research outputs found

    Optical brain imaging using a semi-transparent organic light-emitting diode

    Get PDF
    We report optical brain imaging using a semi-transparent organic light-emitting diode (OLED) based on the orange light-emitting polymer (LEP) Livilux PDO-124. The OLED serves as a compact, extended light source which is capable of uniformly illuminating the cortical surface when placed across a burr hole in the skull. Since all layers of the OLED are substantially transparent to photons with energies below the optical gap of the LEP, light emitted or reflected by the cortical surface may be efficiently transmitted through the OLED and into the objective lens of a low magnification microscope ('macroscope'). The OLED may be placed close to the cortical surface, providing efficient coupling of incident light into the brain cavity; furthermore, the macroscope may be placed close to the upper surface of the OLED, enabling efficient collection of reflected/emitted light from the cortical surface. Hence the use of a semi-transparent OLED simplifies the optical setup, while at the same time maintaining high sensitivity. The OLED is applied here to one of the most demanding forms of optical brain imaging, namely extrinsic optical imaging involving a voltage sensitive dye (VSD). Specifically, we carry out functional imaging of the primary visual cortex (V1) of a rat, using the voltage sensitive dye RH-1691 as a reporter. Imaging through the OLED light-source, we are able to resolve small (~ 0.1 %) changes in the fluorescence intensity of the dye due to changes in the neuronal membrane potential following a visual stimulus. Results are obtained on a single trial basis -- i.e. without averaging over multiple measurements -- with a time-resolution of ten milliseconds

    Disaccahrides-based cryo-formulant effect on modulating phospho/mitochondrial lipids and biological profiles of human leukaemia cells

    Get PDF
    BACKGROUND/AIMS: The use of novel cryo-additive agents to increase cell viability post-cryopreservation is paramount to improve future cell based-therapy treatments. We aimed to establish the Human Leukemia (HL-60) cells lipidomic and biological patterns when cryo-preserved in DMSO alone and with 300 µM Nigerose (Nig), 200 µM Salidroside (Sal) or a combination of Nig (150 µM) and Sal (100 µM). METHODS: HL-60 cells were pre-incubated with Nig/Sal prior, during and post cryopreservation, and subjected to global lipidomic analysis. Malondialdeyhde (MDA), released lactate dehydrogenase (LDH) and reactive oxygen scavenger (ROS) measurements were also carried out to evaluate levels of lipid peroxidation and cytotoxicity. RESULTS: Cryopreserving HL-60 cells in DMSO with Nig and Sal provided optimal protection against unsaturated fatty acid oxidation. Post-thaw, cellular phospholipids and mitochondrial cardiolipins were increased by Nig/Sal as the ratio of unsaturated to saturated fatty acids 2.08 +/- 0.03 and 0.95 +/- 0.09 folds respectively in comparison to cells cryopreserved in DMSO alone (0.49 +/- 0.05 and 0.86 +/- 0.10 folds). HL-60 lipid peroxidation levels in the presence of DMSO + Nig and Sal combined were significantly reduced relative to pre-cryopreservation levels (10.91 +/- 2.13 nmole) compared to DMSO (17.1 +/- 3.96 nmole). DMSO + Nig/Sal combined also significantly reduced cell cytotoxicity post-thaw (0.0128 +/- 0.00182 mU/mL) in comparison to DMSO (0.0164 +/- 0.00126 mU/mL). The combination of Nig/Sal also reduced significantly ROS levels to the levels of prior cryopreservation of HL-60. CONCLUSION: Overall, the establishment of the cryopreserved HL-60 cells lipidomic and the corresponding biological profiles showed an improved cryo-formulation in the presence of DMSO with the Nig/Sal combination by protecting the, mitochondrial inner membrane, unsaturated fatty acid components (i. e. Cardiolipins) and total phospholipids

    Enhanced ion-selective membrane sensors based on a novel electroacoustic measurement approach

    No full text
    this work investigates the mechanical and dielectric properties of an ion-selective membrane based on PDMS:PEG:valinomycin, with a view to creating practical geometries for high performance ion sensing in a variety of realworld settings including healthcare, food industry and agriculture. We focus effort on measuring physical changes in the membrane that can be detected with simple sensors. First a dynamic mechanical analyser instrument was used to determine the effect of potassium ions on the real and imaginary bending storage modulus, loss tangent, glass transition temperature, temperature coefficient of millimeter sized PDMS samples. Second, a microwave dielectric analyser with a coaxial probe fixture was applied to the same sample to isolate dielectric shifts associated with ion uptake, namely the real and imaginary permittivities. These perturbation measurements performed for PDMS, PDMS:PEG and PDMS:PEG:V samples, provide strong evidence that alternatives to traditional electrochemical sensing devices can easily be constructed. Thus a plethora of new acoustic and capacitive sensing geometries arise. Thus there is the opportunity to integrate membranes into quartz crystal microbalance, surface acoustic wave and single-sided capacitance sensors. Some suggestions on suitable dimensions, aspect ratios, operating frequencies are provided
    corecore