642 research outputs found
Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal
We report the first ^{75}As-NMR study on a single crystal of the hole-doped
iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find
that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker
compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin
lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and
shows a step-wise variation at low temperatures, which is indicative of
multiple superconducting gaps, as in the electron-doped
Pr(La)FeAsOF. Furthermore, no evidence was obtained for a
microscopic coexistence of a long-range magnetic and superconductivity
Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole
resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P =
4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice
relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak
just below Tc(P) and decrease with decreasing temperature. The
superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple
gaps at P = 10.8 kbar. We find that the superconductivity appears near a
quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar.
Both electron correlation and superconductivity disappear in the collapsed
tetragonal phase. A systematic study under pressure indicates that electron
correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure
Strong-coupling Spin-singlet Superconductivity with Multiple Full Gaps in Hole-doped BaKFeAs Probed by Fe-NMR
We present Fe-NMR measurements of the novel normal and
superconducting-state characteristics of the iron-arsenide superconductor
BaKFeAs ( = 38 K). In the normal state, the
measured Knight shift and nuclear spin-lattice relaxation rate
demonstrate the development of wave-number ()-dependent spin fluctuations,
except at = 0, which may originate from the nesting across the disconnected
Fermi surfaces. In the superconducting state, the spin component in the
Fe-Knight shift decreases to almost zero at low temperatures, evidencing
a spin-singlet superconducting state. The Fe- results are totally
consistent with a -wave model with multiple full gaps, regardless of
doping with either electrons or holes.Comment: 4 pages, 4 figures, 1 tabl
Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O
We report systematic measurements using the ^{59}Co nuclear quadrupole
resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot
1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c
increases with decreasing x but reaches to a plateau for x \leq0.28. In the
sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3
variation below T_c and down to T\sim T_c/6, which unambiguously indicates the
presence of line nodes in the superconducting (SC) gap function. However, for
larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even
though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of
the SC state. In the normal state, the spin correlations at a finite wave
vector become stronger upon decreasing x, and the density of states at the
Fermi level increases with decreasing x, which can be understood in terms of a
single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and
more added
Evidence for Unconventional Superconductivity in Arsenic-Free Iron-Based Superconductor FeSe : A ^77Se-NMR Study
We report the results of Se--nuclear magnetic resonance (NMR) in
-FeSe, which exhibits a similar crystal structure to the
LaFeAsOF superconductor and shows superconductivity at 8 K. The
nuclear-spin lattice relaxation rate shows behavior below the
superconducting transition temperature without a coherence peak. The
const. behavior, indicative of the Fermi liquid state, can be seen in a
wide temperature range above . The superconductivity in -FeSe is
also an unconventional one as well as LaFeAsOF and related
materials. The FeAs layer is not essential for the occurrence of the
unconventional superconductivity.Comment: 4pages, 4figures, to be published in J. Phys. Soc. Jpn. 77 No.11
(2008
Manipulating the nematic director by magnetic fields in the spin-triplet superconducting state of CuxBi2Se3
Electronic nematicity, a consequence of rotational symmetry breaking, is an
emergent phenomenon in various new materials. In order to fully utilize the
functions of these materials, ability of tuning them through a knob, the
nematic director, is desired. Here we report a successful manipulation of the
nematic director, the vector order-parameter (d-vector), in the spin-triplet
superconducting state of CuxBi2Se3 by magnetic fields. At H = 0.5 T, the ac
susceptibility related to the upper critical field shows a two-fold symmetry in
the basal plane. At H = 1.5 T, however, the susceptibility shows a six-fold
symmetry, which has never been reported before in any superconductor. These
results indicate that the d-vector initially pinned to a certain direction is
unlocked by a threshold field to respect the trigonal crystal symmetry. We
further reveal that the superconducting gap in different crystals converges to
p_x symmetry at high fields, although it differs at low fields.Comment: Errors in figures corrected. Published versio
Spin Fluctuations and Unconventional Superconductivity in the Fe-based Oxypnictide Superconductor LaFeAsO_0.7 probed by 57Fe-NMR
We report Fe-NMR studies on the oxygen-deficient iron (Fe)-based
oxypnictide superconductor LaFeAsO ( 28 K) enriched by
Fe isotope. In the superconducting state, the spin component of
Fe-Knight shift decreases almost to zero at low temperatures
and the nuclear spin-lattice relaxation rate exhibits a
-like dependence without the coherence peak just below , which
give firm evidence of the unconventional superconducting state formed by
spin-singlet Cooper pairing. All these events below are consistently
argued in terms of the extended s-wave pairing with a sign reversal of
the order parameter among Fermi surfaces. In the normal state, we found the
remarkable decrease of upon cooling for both the Fe and As sites,
which originates from the decrease of low-energy spectral weight of spin
fluctuations over whole space upon cooling below room temperature.
Such behavior has never been observed for other strongly correlated
superconductors where an antiferromagnetic interaction plays a vital role in
mediating the Cooper pairing.Comment: 4 pages, 4 figures,Accepted for publication in J. Phys. Soc. Jpn.,
vol.78, No.1 (2009
Continuity of Local Time: An applied perspective
Continuity of local time for Brownian motion ranks among the most notable
mathematical results in the theory of stochastic processes. This article
addresses its implications from the point of view of applications. In
particular an extension of previous results on an explicit role of continuity
of (natural) local time is obtained for applications to recent classes of
problems in physics, biology and finance involving discontinuities in a
dispersion coefficient. The main theorem and its corollary provide physical
principles that relate macro scale continuity of deterministic quantities to
micro scale continuity of the (stochastic) local time.Comment: To appear in: "The fascination of Probability, Statistics and Their
Applications. In honour of Ole E. Barndorff-Nielsen on his 80th birthday
Selfsimilar solutions in a sector for a quasilinear parabolic equation
We study a two-point free boundary problem in a sector for a quasilinear
parabolic equation. The boundary conditions are assumed to be spatially and
temporally "self-similar" in a special way. We prove the existence, uniqueness
and asymptotic stability of an expanding solution which is self-similar at
discrete times. We also study the existence and uniqueness of a shrinking
solution which is self-similar at discrete times.Comment: 23 page
- …