1 research outputs found
Robust cryogenic matched low-pass coaxial filters for quantum computing applications
Electromagnetic noise is one of the key external factors decreasing
superconducting qubits coherence. Matched coaxial filters can prevent microwave
and IR photons negative influence on superconducting quantum circuits. Here, we
report on design and fabrication route of matched low-pass coaxial filters for
noise-sensitive measurements at milliKelvin temperatures. A robust transmission
coefficient with designed linear absorption (-1dB/GHz) and ultralow reflection
losses less than -20 dB up to 20 GHz is achieved. We present a mathematical
model for evaluating and predicting filters transmission parameters depending
on their dimensions. It is experimentally approved on two filters prototypes
different lengths with compound of Cu powder and Stycast commercial resin
demonstrating excellent matching. The presented design and assembly route are
universal for various compounds and provide high repeatability of geometrical
and microwave characteristics. Finally, we demonstrate three filters with
almost equal reflection and transmission characteristics in the range from 0 to
20 GHz, which is quite useful to control multiple channel superconducting
quantum circuits.Comment: 5 pages, 4 figure