17 research outputs found

    Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions

    Get PDF
    Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 μm × 600 μm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments

    Watermarking biomedical time series data

    No full text
    This thesis addresses the problem of information hiding in low dimensional digital data focussing on issues of privacy and security in Electronic Patient Health Records (EPHRs). The thesis proposes a new security protocol based on data hiding techniques for EPHRs. This thesis contends that embedding of sensitive patient information inside the EPHR is the most appropriate solution currently available to resolve the issues of security in EPHRs. Watermarking techniques are applied to one-dimensional time series data such as the electroencephalogram (EEG) to show that they add a level of confidence (in terms of privacy and security) in an individual’s diverse bio-profile (the digital fingerprint of an individual’s medical history), ensure belief that the data being analysed does indeed belong to the correct person, and also that it is not being accessed by unauthorised personnel. Embedding information inside single channel biomedical time series data is more difficult than the standard application for images due to the reduced redundancy. A data hiding approach which has an in built capability to protect against illegal data snooping is developed. The capability of this secure method is enhanced by embedding not just a single message but multiple messages into an example one-dimensional EEG signal. Embedding multiple messages of similar characteristics, for example identities of clinicians accessing the medical record helps in creating a log of access while embedding multiple messages of dissimilar characteristics into an EPHR enhances confidence in the use of the EPHR. The novel method of embedding multiple messages of both similar and dissimilar characteristics into a single channel EEG demonstrated in this thesis shows how this embedding of data boosts the implementation and use of the EPHR securely.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore