31 research outputs found
Studies on the PII-PipX-NtcA Regulatory Axis of Cyanobacteria Provide Novel Insights into the Advantages and Limitations of Two-Hybrid Systems for Protein Interactions
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a “false positive”, the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.This work was supported by the grant PID2020-118816GB-I00, funded by MCIN/AEI/10.13039/501100011033 from the Spanish Government, grants VIGROB23-126 and GRE20-04-C from the University of Alicante to A.C. C.J. was the recipient of a PhD fellowship (ACIF/2019/045) from Conselleria d’Innovació, Universitats, Ciència i Societat Digital of the Generalitat Valenciana. S.B. was supported by a National Grant from the Algerian Ministry of Higher Education and Scientific Research
The TGFBR1*6A allele is not associated with susceptibility to colorectal cancer in a Spanish population: a case-control study
Background: TGF-β receptor type I is a mediator of growth inhibitory signals. TGFBR1*6A (rs11466445) is a common polymorphic variant of the TGF-β receptor I gene and has been associated with tumour susceptibility. Nevertheless, the role of this polymorphism as a risk factor for colorectal cancer is controversial. The aim of this study was to assess the association between TGFBR1*6A and colorectal cancer, age, sex, tumour location and tumour stage in a Spanish population. Methods: The case-control study involved 800 Spanish subjects: 400 sporadic colorectal cancer patients and 400 age-, sex-, and ethnic-matched controls. The odds ratio (OR) and 95% confidence interval (95% CI) for the TGFBR1*6A polymorphism were calculated using unconditional logistic regression adjusted for age and sex. Analysis of somatic mutations at the GCG repeat of TGFBR1 exon 1 and germline allele-specific expression were also conducted to obtain further information on the contribution of the TGFBR1*6A allele to CRC susceptibility. Results: There was no statistically significant association between the TGFBR1*6A allele and CRC (p > 0.05). The OR was 1.147 (95% CI: 0.799–1.647) for carriers of the TGFBR1*6A allele and 0.878 (95% CI: 0.306–2.520) for homozygous TGFBR1*6A individuals compared with the reference. The frequency of the polymorphism was not affected by age, sex or tumour stage. The TGFBR1*6A allele was more prevalent among colon tumour patients than among rectal tumour patients. Tumour somatic mutations were found in only two of 69 cases (2.9%). Both cases involved a GCG deletion that changed genotype 9A/9A in normal DNA to genotype 9A/8A. Interestingly, these two tumours were positive for microsatellite instability, suggesting that these mutations originated because of a deficient DNA mismatch repair system. Allele-specific expression of the 9A allele was detected in seven of the 14 heterozygous 9A/6A tumour cases. This could have been caused by linkage disequilibrium of the TGFBR1*6A allele with mutations that cause allele-specific expression, as was recently suggested. Conclusion: Our results suggest that the TGFBR1*6A allele does not confer an increased risk of colorectal cancer in the Spanish population.The research was supported in part by grants from the Generalitat Valenciana in Spain (AP106/06) and the Biomedical Research Foundation of the Hospital of Elche (FIBElx-02/2007). T.M-B was a recipient of a fellowship from the Spanish Society of Medical Oncology
HGUE-C-1 is an atypical and novel colon carcinoma cell line
Background: Colorectal carcinoma is a common cause of cancer. Adjuvant treatments include: 5-fluorouracil administered together with folinic acid, or more recently, oral fluoropyrimidines such as capecitabine, in combination with oxaliplatin or irinotecan. Metastatic colorectal cancer patients can benefit from other additional treatments such as cetuximab or bevacizumab. Methods: Using cell culture techniques, we isolated clonal populations from primary cultures of ascitic effusion derived from a colon cancer patient and after several passages an established cell line, HGUE-C-1, was obtained. Genetic analysis of HGUE-C-1 cells was performed by PCR of selected exons and sequencing. Cell proliferation studies were performed by MTT assays and cell cycle analyses were performed by flow cytometry. Retinoblastoma activity was measured by luciferase assays and proteins levels and activity were analysed by Western blot or immunohistochemistry. Results: We have established a new cell line from ascitic efussion of a colon cancer patient who did not respond to 5-fluorouracil or irinotecan. HGUE-C-1 cells did not show microsatellite instability and did not harbour mutations in KRAS, BRAF, PI3KCA or TP53. However, these cells showed loss of heterozygosity affecting Adenomatous Polyposis Coli and nuclear staining of β-catenin protein. The HGUE-C-1 cell line was sensitive to erlotinib, gefitinib, NVP-BEZ235, rapamycin and trichostatin, among other drugs, but partially resistant to heat shock protein inhibitors and highly resistant to AZD-6244 and oxaliplatin, even though the patient from which this cell line was derived had not been exposed to these drugs. Molecular characterization of this cell line revealed low expression levels and activity of Retinoblastoma protein and elevated basal levels of Erk1/2 activity and p70S6K expression and activity, which may be related to chemoresistance mechanisms. Conclusions: HGUE-C-1 represents a novel and peculiar colon carcinoma model to study chemoresistance to chemotherapeutic agents and to novel anti-neoplasic drugs that interrupt signalling pathways such as the APC/βcatenin, Ras/Raf/Mek/Erk, PI3K/mTOR/p70S6K pathways as well as histone regulation mechanisms.This article has been funded by grants from the Instituto de Salud Carlos III FIS PI080901and FIS PI01202025 to Miguel Saceda
The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study
Background: The Int7G24A variant of transforming growth factor-beta receptor type I (TGFBR1) has been shown to increase the risk for kidney, ovarian, bladder, lung and breast cancers. Its role in colorectal cancer (CRC) has not been established. The aims of this study were to assess the association of TGFBR1*Int7G24A variant with CRC occurrence, patient age, gender, tumour location and stage. Methods: We performed a case-control study with 504 cases of sporadic CRC; and 504 non-cancerous age, gender and ethnically matched controls. Genotyping analysis was performed using allelic discrimination assay by real time PCR. Results: The Int7G24A variant was associated with increased CRC incidence in an additive model of inheritance (P for trend = 0.005). No significant differences were found between Int7G24A genotypes and tumour location or stage. Interestingly, the association of the Int7G24A variant with CRC risk was significant in men (odds ratio 4.10 with 95% confidence intervals 1.41-11.85 for homozygous individuals; P for trend = 0.00023), but not in women. We also observed an increase in susceptibility to CRC for individuals aged less than 70 years. Conclusion: Our data suggest that the Int7G24A variant represents a risk factor for CRC in the male Spanish population.Research supported in part by grants from the Generalitat Valenciana in Spain (AP106/06) and the Biomedical Research Foundation from the Hospital of Elche, Spain (FIBElx-02/2007). T.M-B is recipient of a fellowship from the Spanish Society of Medical Oncology (SEOM)
TGFBR1 Intralocus Epistatic Interaction as a Risk Factor for Colorectal Cancer
In colorectal cancer (CRC), an inherited susceptibility risk affects about 35% of patients, whereas high-penetrance germline mutations account for <6% of cases. A considerable proportion of sporadic tumors could be explained by the coinheritance of multiple low-penetrance variants, some of which are common. We assessed the susceptibility to CRC conferred by genetic variants at the TGFBR1 locus. We analyzed 14 polymorphisms and the allele-specific expression (ASE) of TGFBR1 in 1025 individuals from the Spanish population. A case-control study was undertaken with 504 controls and 521 patients with sporadic CRC. Fourteen polymorphisms located at the TGFBR1 locus were genotyped with the iPLEX Gold (MassARRAY-Sequenom) technology. Descriptive analyses of the polymorphisms and haplotypes and association studies were performed with the SNPator workpackage. No relevant associations were detected between individual polymorphisms or haplotypes and the risk of CRC. The TGFBR1*9A/6A polymorphism was used for the ASE analysis. Heterozygous individuals were analyzed for ASE by fragment analysis using cDNA from normal tissue. The relative level of allelic expression was extrapolated from a standard curve. The cutoff value was calculated with Youden's index. ASE was found in 25.4% of patients and 16.4% of controls. Considering both bimodal and continuous types of distribution, no significant differences between the ASE values of patients and controls were identified. Interestingly, a combined analysis of the polymorphisms and ASE for the association with CRC occurrence revealed that ASE-positive individuals carrying one of the most common haplotypes (H2: 20.7%) showed remarkable susceptibility to CRC (RR: 5.25; 95% CI: 2.547–5.250; p<0.001) with a synergy factor of 3.7. In our study, 54.1% of sporadic CRC cases were attributable to the coinheritance of the H2 haplotype and TGFBR1 ASE. These results support the hypothesis that the allelic architecture of cancer genes, rather than individual polymorphisms, more accurately defines the CRC risk
Decreased generation of C-terminal fragments of apoer2 and increased reelin expression in Alzheimer’s disease
Increasing evidence indicates that altered reelin signaling could contribute to synaptic dysfunction in Alzheimer's disease (AD). We found that reelin protein and mRNA levels were increased in the AD brain (particularly at advanced Braak stages in apolipoprotein E4 noncarriers), compared with that of control subjects. The β-amyloid (Aβ) protein impairs reelin activity and increases reelin expression through a mechanism that is not yet understood. To explore that mechanism, we examined the effect of Aβ aa 1–42 (Aβ42) on DNA methylation of the RELN promoter and the processing of reelin receptor apolipoprotein E receptor 2 (ApoER2) in differentiated SH-SY5Y cells because ApoER2 C-terminal fragments (CTFs), generated after reelin binding, regulate reelin expression. We found that Aβ42 decreased nuclear levels of DNA-methyltransferase 1. However, RELN promoter methylation did not change in Aβ42- treated cells or in AD brain extracts. Instead, the levels of ApoER2-CTF appeared significantly lower in Aβ42-treated cells and in AD extracts from advanced Braak stages of apolipoprotein E4 noncarriers. Our data show that ApoER2- CTF levels are decreased, whereas reelin expression is increased in AD brain at advanced Braak stages and after Aβ treatment, supporting the view that ApoER2-CTF exerts a modulatory role on reelin expression.—Mata-Balaguer, T., Cuchillo-Ibañez, I., Calero, M., Ferrer, I., Sáez-Valero, J. Decreased generation of C-terminal fragments of ApoER2 and increased reelin expression in Alzheimer's disease.This work was supported by grants from the FundaciĂłn RamiĂłn Areces, Fondo de Investigaciones Sanitarias [PI15/00665, cofunded by the Fondo Europeo de Desarrollo Regional (FEDER) “Investing in your future”], and through Centro de InvestigatiĂłn BiomĂ©dica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; Instituto de Salud Carlos III, Madrid, Spain). The authors also acknowledge financial support from the Spanish Ministerio de EconomĂa y Competitividad, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV- 2013–0317).Peer reviewe
Isochore chromosome maps of the human genome
The human genome is a mosaic of isochores, which are long DNA segments (z.Gt;300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.This work was supported by grant BIO99-0651-CO2-01 from the Spanish Government
Reelin in Alzheimer's Disease, Increased Levels but Impaired Signaling: When More is Less
In the continuing search for proteins that play a role in Alzheimer's disease (AD) and that are related to the pathological hallmarks, those that influence cognitive function and that constitute potential therapeutic targets deserve special interest. Reelin is a signaling protein that is involved in a cascade of cytoplasmic events that control tau phosphorylation and that regulate synaptic neurotransmission, plasticity, and memory. Both Reelin expression and glycosylation are modulated by amyloid-β (Aβ), suggesting that the activity of Reelin could be affected in AD and hence, its possible influence on this pathology should be taken into consideration. The levels of Reelin in the brain of AD patients appear to be altered and interestingly, disrupted Reelin signaling is associated with increased tau phosphorylation as well as with amyloid-β protein precursor processing. We discuss here the somewhat contradictory data regarding Reelin levels in AD and we evaluate the processing of the Reelin receptor, ApoER2, and other downstream events, such as the phosphorylation of the intracellular adapter Dab1. Together with brain Reelin levels, these changes may represent a relevant read-out of Reelin signaling in the human brain.Peer reviewe
The β-amyloid peptide compromises Reelin signaling in Alzheimer's disease
Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cells led to increase expression of Reelin, but secreted Reelin results trapped together with Aβ aggregates. In frontal cortex extracts an increase in Reelin mRNA, and in soluble and insoluble (guanidine-extractable) Reelin protein, was associated with late Braak stages of Alzheimer's disease (AD), while expression of its receptor, ApoER2, did not change. However, Reelin-dependent induction of Dab1 phosphorylation appeared reduced in AD. In cells, Aβ reduced the capacity of Reelin to induce internalization of biotinylated ApoER2 and ApoER2 processing. Soluble proteolytic fragments of ApoER2 generated after Reelin binding can be detected in cerebrospinal fluid (CSF). Quantification of these soluble fragments in CSF could be a tool to evaluate the efficiency of Reelin signaling in the brain. These CSF-ApoER2 fragments correlated with Reelin levels only in control subjects, not in AD, where these fragments diminished. We conclude that while Reelin expression is enhanced in the Alzheimer's brain, the interaction of Reelin with Aβ hinders its biological activity.This work was supported by grants from the Fundación Ramón Areces, Fondo de Investigaciones Sanitarias (PI11/03026; PI12/00593; PI15/00665 co-funded by the Fondo Europeo de Desarrollo Regional) and under the aegis of the EU BIOMARKAPD-Joint Programming on Neurodegenerative Diseases (JPND) project; and through CIBERNED (Instituto de Salud Carlos III, Spain). VB was supported by a JAE-Predoctoral fellowship from the CSIC (Spain), co-funded by the Fondo Social Europeo (FSE), E.C.Peer reviewe