8 research outputs found

    A Survey On Medical Digital Imaging Of Endoscopic Gastritis.

    Get PDF
    This paper focuses on researches related to medical digital imaging of endoscopic gastritis

    Density Based Breast Segmentation For Mammograms Using Graph Cut Techniques.

    Get PDF
    In this work we explore the application of graph cuts techniques to the problem of finding the boundary of different breast tissue regions in mammograms

    Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms

    No full text
    Meta heuristics is an optimization approach that works as an intelligent technique to solve optimization problems. Evolutionary algorithms, human-based algorithms, physics-based algorithms and swarm intelligence are categorized under meta-heuristic algorithms. This study presents a critical review of meta-heuristic algorithms for future reference, including concepts, applications, advantages and disadvantages, before focusing on one specific meta-heuristic algorithm, namely, Emperor Penguin Optimizer (EPO). It is an intelligent algorithm developed after observing the behaviour of emperor penguins during cold winters. This technique was introduced by Dhiman in 2018 and adopted to solve optimization problems. The study reviews the algorithm variants starting from its invention in 2018 until 2022. The literature is comprehensively reviewed to reflect on the progress of the algorithm’s adoption, highlighting a new area for improvement. The most significant result is that the proposed algorithm has been proven an effective technique. The merits and demerits of the algorithm are explored to provide valuable perspectives for future research. This study answers the question regarding meta-heuristic algorithms’ effectiveness, especially EPO. Both beginners and experts of EPO research can use the findings of this study as guidelines for enhancing current concepts and applications of state-of-the-art algorithms for future development works

    Computer Aided Detection of Breast Density and Mass, and Visualization of Other Breast Anatomical Regions on Mammograms Using Graph Cuts

    Get PDF
    Breast cancer mostly arises from the glandular (dense) region of the breast. Consequently, breast density has been found to be a strong indicator for breast cancer risk. Therefore, there is a need to develop a system which can segment or classify dense breast areas. In a dense breast, the sensitivity of mammography for the early detection of breast cancer is reduced. It is difficult to detect a mass in a breast that is dense. Therefore, a computerized method to separate the existence of a mass from the glandular tissues becomes an important task. Moreover, if the segmentation results provide more precise demarcation enabling the visualization of the breast anatomical regions, it could also assist in the detection of architectural distortion or asymmetry. This study attempts to segment the dense areas of the breast and the existence of a mass and to visualize other breast regions (skin-air interface, uncompressed fat, compressed fat, and glandular) in a system. The graph cuts (GC) segmentation technique is proposed. Multiselection of seed labels has been chosen to provide the hard constraint for segmentation of the different parts. The results are promising. A strong correlation () was observed between the segmented dense breast areas detected and radiological ground truth

    <i>H. pylori</i> Related Atrophic Gastritis Detection Using Enhanced Convolution Neural Network (CNN) Learner

    No full text
    Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori (H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer, which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection located at the gastric antrum, where the classification is of binary classes of normal versus atrophic gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC) superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50 are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant as the network depth increases. An upgrade to the current standards method is highly anticipated to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work incorporates improved techniques revolving within DCNN with pooling as pre-trained models and channel shuffle to assist streams of information across feature channels to ease the training of networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA models the relationship between the two data sets of significant features generated by pre-trained ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis

    H. pylori Related Atrophic Gastritis Detection Using Enhanced Convolution Neural Network (CNN) Learner

    No full text
    Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori (H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer, which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection located at the gastric antrum, where the classification is of binary classes of normal versus atrophic gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC) superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50 are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant as the network depth increases. An upgrade to the current standards method is highly anticipated to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work incorporates improved techniques revolving within DCNN with pooling as pre-trained models and channel shuffle to assist streams of information across feature channels to ease the training of networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA models the relationship between the two data sets of significant features generated by pre-trained ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis
    corecore