2 research outputs found

    Optimization Of Pid Controller For Double-Link Flexible Robotic Manipulator Using Metaheuristic Algorithms

    Get PDF
    This paper investigates the optimization approach of PID controller for double-link flexible robotic manipulator using metaheuristic algorithm. This research focus on population-based metaheuristic that is particle swarm optimization (PSO) and artificial bees algorithm (ABC) to tune the PID control parameters of the system. In the tuning process, the number of iteration was set and the number of particles was varied. The tuning process was interrupted once the convergence value of Mean Square Error (MSE) was achieved. For PSO, it was found that when the number of iteration increased, or the number of particles were set to higher values, there were no significant improvement of MSE. Results showed that 25 iterations were required for MSE to converge for hub angle and 20 iterations were required for MSE to converge for endpoint acceleration. Meanwhile, it was discovered that ABC portrayed the same pattern with PSO whereby when the number of iteration increased or the number of colony sizes were set to higher values, there were no significant improvement of MSE. From the results, 15 iterations were required for MSE to converge for hub angle and 25 iterations were required for MSE to converge for end-point acceleration. The performance of the algorithm was validated by evaluating the performance of the controllers in comparison with the conventional controller that is Ziegler Nichols (ZN) in term of input tracking capability and vibration suppression for both links. The system managed to reach desired angle for both hub angle 1 and 2. Besides, vibration reduction shows great improvement for both link 1 and 2. This signifies that, the PSO and ABC algorithm are very effective in optimizing the PID parameters

    Fuzzy-Pid Based Controler For Active Vibration Control Of Nonlinear Dynamic Systems

    Get PDF
    The light weight characteristic offered by flexible structures can be easily influenced to the excessive vibration and it also brings several problems including instability, fatigue, bending and low performance. Therefore, it is compulsory to suppress the undesired vibration of flexible structures due to sustain its performance. This paper presents the development of hybrid controller known as fuzzy-PID based controller for vibration suppression of the horizontal flexible plate structure. Initially, the experimental rig was designed and integrated with the instrumentation system for vibration data collection purpose. The vibration data obtained experimentally was used to model the dynamic system based on auto-regressive with exogenous input structure using evolutionary swarm algorithm. The model obtained in simulation environment was then used for the development of PID-Fuzzy based controller. The performance of proposed controller was validated by exerting two types of disturbances to the system for robustness verification. It was indicated that PID-fuzzy controller was achieved higher attenuation value at the first mode of vibration by achieving 32.14 dB attenuation in the system. The attenuation value has been reduced from 103.5 dB to 71.36 dB, equivalent to 31.05 % attenuation, after the introduction of vibration control. The mean squared error achieved by the controller is 0.0237, compared with 0.6655 before the activation of controlle
    corecore