18 research outputs found
Dynamic modeling of McKibben muscle using empirical model and particle swarm optimization method
This paper explores empirical modeling of McKibben muscle in characterizing its hysteresis behavior and nonlinearities during quasi-static, quasi-rate, and historic dependencies. The unconventional materials-based actuating system called McKibben muscle has excellent properties of power-to-weight ratio, which could be used in rehabilitation orthosis application for condition monitoring, physical enhancement, and rehabilitation therapy. McKibben muscle is known to exhibit hysteresis behavior and it is rate-dependent (the level of hysteresis depends closely on rate of input excitation frequency). This behavior is undesirable and it must be considered in realizing high precision control application. In this paper, the nonlinearities of McKibben muscle is characterized using empirical modeling with multiple correction functions such as shape irregularity and slenderness. A particle swarm optimization (PSO) method is used to determine the best parametric values of the proposed empirical with modified dynamic friction model. The LabVIEW and MATLAB platforms are used for data analysis, modeling and simulation. The results confirm that this model able to significantly characterize the nonlinearities of McKibben muscle while considering all dependencies
Hysteresis Modelling of Pneumatic Artificial Muscle using General Cubic Equation and Factor Theorem Prediction Method / Mohd Azuwan Mat Dzahir...[et al.]
Due to inherent hysteresis in a pneumatic artificial muscle, the accompanying control of this compliant actuator becomes more complicated. In literature, only a few implementations of the hysteresis modelling in the associated position control system could be found. In addition, the high complexity of the contraction-force and contraction-pressure models when accounting for hysteresis effect, the implementation of such model is limited in its use in the pneumatic muscle position control only. However, implementing a complicated control algorithm does not always indicate the best solution that could be used to control the pneumatic artificial muscles. There are arguments in the field of rehabilitation robotics regarding what was the best control system to the orthotic problem for rehabilitation. It is preferred that the control system should be simplified as much as possible; multiple sensors and impedances are only increase the complexity of the control system. Rather than using a very complicated algorithm for control system of the pneumatic artificial muscle, a simple and noble prediction method using general cubic equation and factor theorem is proposed for the hysteresis modelling at different loads. The methodology used to establish the hysteresis modelling and prediction method of the pneumatic artificial muscle are as follows; first is the characterization of the pneumatic artificial muscle at different loads and pressures; second is to develop a prediction method for generating constraint models of hysteresis data at a different loads using general cubic equation and factor theorem; third is to establish a simple theorem or algorithm to extract the hysteresis models (i.e., contraction and expansion) of a pneumatic artificial muscle at different loads based on the generated constraint models; and the final stage of the research is to obtain the hysteresis models at different loads. The generated hysteresis models and hysteresis data obtained from experimental study were compared to verify the reliability of the proposed hysteresis modelling prediction method. The simulation results shows that the hysteresis modelling was able to generate an apropriate constraint models at a different loads
An overview of local positioning system: technologies, techniques and applications
Positioning system like global position system (GPS) and Local position system (LPS) have become very important in a large number of applications such as monitoring and tracking, etc. Because of the limitations of GPS in indoor environments due to the lack of line of sight (LoS), the use of LPS has become a true necessary to estimate user’s or object position with a good accuracy. In order to choose the best LPS system, a compromise between accuracy, precision, power consumption, coverage and cost should be taken into account. This paper introduces an overview of LPS performance parameters, current technologies, techniques and methods used by LPS. On the other hand, the comparison between LPS technologies and techniques used based on those technologies are also discussed. Furthermore, the LPS’s applications that have been done by previous researches such as human tracking, object tracking, animal tracking and automatic guide vehicle (AGV) tracking will be discussed. We believe this paper would catalyze further investigation by the researcher which is interested on the LPS field
Estimation of transition frequency during continuous translation surface perturbation
Depending on task requirements, a human is able to select distinct strategies such as the use of an ankle strategy and hip strategy to maintain their balance. Postural control actions often co-occur with other movements, and such movements may bring about a change from one type of postural coordination to another. The selection of a postural control strategy has typically been investigated by the transition of the center of mass (COM), center of pressure (COP), and in between angle joint motion along with their characteristics. In this paper, we proposed a method using the logistic function of the sigmoid model based on cross-correlation coefficient (CCF) data for investigating and observing the transition of postural control strategies of COM-COP and ankle-hip angles towards anterior-posterior (AP) continuous translation perturbation. Subjects were required to stand on the motion base platform where perturbations with an increasing frequency (0.2 Hz to 0.8 Hz) and decreasing frequency (0.8 Hz to 0.2 Hz) in steps of 0.02 Hz, were induced. As the frequency increased, the COM and COP displacements were decreased, with the opposite trend observable with decreasing frequency. This pattern was also observed at the head peak-to-peak amplitude. Meanwhile, ankle and hip angular displacements were increased during increasing frequency and decreased during decreasing frequency. In this paper, the proposed sigmoid model could identify the transition frequency of COM-COP and ankle-hip transition. The mean transition frequency of COM-COP during increasing frequency was 0.44 Hz, and the ankle-hip transition frequency was 0.42 Hz. Meanwhile, for decreasing frequency, the COM-COP transition frequency was 0.55 Hz, and for the ankle-hip transition the frequency was 0.56 Hz. With frequencies, both increasing and decreasing, the COM-COP and ankle-hip transition frequencies occurred almost at the same frequency. Furthermore, the transition occurred at a lower time scale during increasing frequency compared to decreasing frequency. In conclusion, the continuous translation surface perturbation provided information on the behavior of postural control strategies. A sudden change in 'phase angle' was observed, where either an ankle or hip strategy was implemented to maintain balance. Besides, the transition frequency of postural control strategies could be determined to occur between 0.4 Hz and 0.6 Hz, based on the average value, for healthy young subjects in the AP plane. Furthermore, the proposed sigmoid model was believed to be able to be used in the determination of transition frequency in postural control strategies
Effects of Baby Carrier on Wearer’s Posture Stability / Aizreena Azaman...[et al.]
Design of baby carrier mostly focused on baby’s needs. But less consideration have been given to wearer. The objective of this study is to investigate the effect of baby carrier on the wearer’s posture stability and displacement. It was hypothesized that baby carrier would reduce loading effect caused by baby’s weight on the wearer’s body. Fifteen healthy young female volunteered to participate in this study. Three dimensional motion data and force distribution were collected using 3D Investigator system and force platform respectively. Subjects underwent three conditions of standing which are standing on the force plate without load (Control), standing on the force plate with load only (L) and standing on the force plate with load and wearing a baby carrier (LBC). In this study, dummy baby was used to create load effect mimicking real baby’s weight. For every condition, active markers will be placed at the subject’s joint and the subject is asked to standing quietly on the force plate. Then, effect of different position of baby carrier also will be analysed including front position, back position, and side position. In this investigation wrapping type of baby carrier or Mei Tai is used. Collected data were used to measure Centre of Pressure (COP) and joint displacement. The results shows that by using baby carrier there are significance change in shoulder and pelvic joint displacement. Baby carrier also reduced the COP sway compared to other condition, but no significance changes recorded. Even though changes in posture displacement and the COP sway were relatively small, further study is still warranted to improve function and comfort design of baby carrier
Optimal tuning of a PID controller for EMDAP-CVT using particle swarm optimization
This paper looked into optimal tuning of a Proportional-Integral-Derivative (PID) controller used in Electro-mechanical Dual Acting Pulley Continuously Variable Transmission (EMDAP-CVT) system for controlling the output obtained, and hence, to minimize the integral of absolute errors (IAE). The main objective was to obtain a stable, robust, and controlled system by tuning the PID controller by using Particle Swarm Optimization (PSO) algorithm. The incurred value was compared with the traditional tuning techniques like Ziegler-Nichols and it had been proven better. Hence, the results established that tuning the PID controller using PSO technique offered less overshoot, a less sluggish system, and reduced IAE