12 research outputs found

    Rheological Perspectives of Clay-Based Tailings in the Mining Industry

    Get PDF
    The mining industry faces a significant problem in regions with water scarcity and has had to put in place new strategies to preserve its environmental and economic sustainability. An attractive option in recent years has been the direct use of seawater, avoiding the construction of reverse osmosis plants to desalinate. But, some operational complexities are the subject of discussion and research for engineers; for example, the difficulties by the high presence of complex gangues like clays and the location of the plants, far from the coast and at high altitude. The latter requires high investments in pumping, the only option in some cases. In this scenario, it is imperative to improve the efficiency of water use and advance to effective closures of water circuits. A critical stage is the thickening that allows water to be recovered from the tailings, reusing it in upstream operations. However, the performance of the tailings management is usually limited by the rheological properties of the thickened slurries, which impact on the discharge from the underflow of the thickeners, pumping energy costs, disposal on the tailings storage facilities (TSFs). This text describes the consequences caused by a saline medium on the rheological properties of clay-based tailings, analysing scenarios that allow tackling this operation

    Viscoelasticity of Quartz and Kaolin Slurries in Seawater: Importance of Magnesium Precipitates

    Get PDF
    In this study, the viscoelastic properties of quartz and kaolin suspensions in seawater were analysed considering two distinct conditions: pH 8 and 10.7. Creep and oscillatory sweep tests provided the rheological parameters. An Anton Paar MCR 102 rheometer (ANAMIN Group, Santiago, Chile) was used with a vane-in-cup configuration, and the data were processed with RheoCompass (TM) Light software (ANAMIN Group, Santiago, Chile). The outcomes were associated with the formation of solid species principally composed of magnesium precipitates. The magnesium in solution reduced in the presence of quartz (68 wt %), from 1380 to 1280 mg/L. Since the difference was not large regarding the solid-free seawater, the disposition of solid complexes at pH 10.7 was expected to be similar. The jump in pH caused both yield stress and viscoelastic moduli to drop, suggesting that the solid precipitates diminished the strength of the particle networks that made up the suspension. For the kaolin slurries (37 wt %), the yield stress raised when the pH increased, but unlike quartz, there was significant adsorption of magnesium cations. In fact, the concentration of magnesium in solution fell from 1380 to 658 mg/L. Dynamic oscillatory assays revealed structural changes in both pulps; in particular, the phase angle was greater at pH 8 than at pH 10.7, which indicates that at more alkaline conditions, the suspension exhibits a more solid-like character.Ricardo I. Jeldres thanks Conicyt Fondecyt 11171036 and Centro CRHIAM Project Conicyt/Fondap/15130015. The authors are grateful for the contribution of the Scientific Equipment Unit—MAINI of the Universidad Católica del Norte for facilitating the XRD analysis. Pedro Robles thanks the Pontificia Universidad Católica de Valparaíso for the support provided. This research was funded by Conicyt Fondecyt 11171036 and Centro CRHIAM Project Conicyt/Fondap/1513001

    Copper tailing flocculation in seawater: relating the yield stress with fractal aggregates at varied mixing conditions

    Get PDF
    The implications of physical conditions of the feedwell on the rheological properties of synthetic copper tailings, flocculated in seawater, were analysed. The mixing intensity of flocculation was related to the structural characteristics of the aggregates, and the outcomes were linked to the yield stress of the pulp sediments. Tailings settling assays were conducted by using a 30 mm turbine type stirrer with an in-situ aggregate size characterisation. The structural characteristics of the aggregates were determined by using the focused beam reflectance measurement (FBRM). After a mixing time between the pulp and the flocculant, the sample was allowed to settle for 2.5 h, where the variation of the sediment height was minimal. The sediment was gently removed and subjected to rheological characterisation. The yield stress was measured on an Anton Paar MCR 102 rheometer (ANAMIN Group, Santiago, Chile), with a vane-in-cup configuration. The mixing intensity was related to the characteristics of the aggregates, and the outcomes were linked to the yield stress of the flocculated pulp sediments. More aggressive hydrodynamics deteriorated the structure of the aggregates, promoting the reduction of both its size and the fractal dimension. This brought direct consequences on the rheological properties of the sediments: at higher mixing level, the yield stress was lower. The explanation lies in the structural changes of the aggregates, where at a fixed mixing rate, the yield stress presented a seemingly exponential increase over the fractal dimension. Additionally, correlations were found between the rheological properties with settling rate and aggregate size.Ricardo I. Jeldres thanks Conicyt Fondecyt 11171036 and Centro CRHIAM Project Conicyt/Fondap/15130015. The authors are grateful for the contribution of the Scientific Equipment UnitMAINI of the Universidad Católica del Norte for supporting the experimental tests. Pedro Robles thanks the Pontificia Universidad Católica de Valparaíso for the support provided

    Improving the Flocculation Performance of Clay-Based Tailings in Seawater: A Population Balance Modelling Approach

    No full text
    A population balance model described the flocculation of clay-based mining tailings in treated seawater with reduced magnesium content. For the treatment, 0.06 M of lime was added to the liquor, generating solid magnesium complexes that were subsequently removed by vacuum filtration. Magnesium content varied between 10–1440 ppm when mixing raw seawater with treated seawater. The aggregate size was analysed by the Focused Beam Reflectance Measurement (FBRM) technology. The model follows the dynamics of the aggregation-rupture and it provides a good approximation to the temporal evolution. A decrease in collision efficiency was implemented as an indicator of the polymer depletion, describing the size reduction. Lower magnesium content makes larger aggregates with a higher fractal dimension, but an increase in the concentration of clays reduces both the size of aggregates and the fractal dimension, indicating more open and porous structures, with higher permeability to the passage of fluid. The model efficiently illustrates the experimental data, with R-square (R2) greater than 0.9 and Goodness of Fit (GoF) greater than 95% in most cases, wherein the fitting parameters allowed for analysing the impact of magnesium and clays on the collision efficiency, collision frequency, and fragmentation rate. The model is predictive with few parameters, and it is potentially a powerful tool for water management optimisation

    Analysis of Kaolin Flocculation in Seawater by Optical Backscattering Measurements: Effect of Flocculant Management and Liquor Conditions

    No full text
    Optical backscattering (OBS) signal values were used to evaluate the flocculation of kaolin slurries and seek the implications of using seawater. Two anionic flocculants were applied to kaolin suspensions at several dosages and in water of varying pH and electrolyte concentration. An OBS height scan method was used to estimate the degree of aggregation, supernatant quality, and solids concentration of the sediments. The residual solids of the supernatant depended of the extent of particle coagulation before flocculant was added, where the pH and salinity displayed a significant impact on flocculation. The OBS results were highly sensitive to the presence of fine particles, which was estimated in parallel from the focused beam reflectance measurements (FBRM.) In seawater, without flocculant added, the samples had increased root-mean-square scattering (Frms) values and larger final sediment volume than samples prepared in water with lower electrolyte concentration. This indicates a higher initial state of aggregation of the particles in seawater. Then, the aggregation degree was best linked to the square-weighted chord length distribution of the FBRM data, which intensifies the sensitivity to coarse aggregates.Applied Science, Faculty ofNon UBCMining Engineering, Keevil Institute ofReviewedFacult

    Reducing Magnesium within Seawater Used in Mineral Processing to Improve Water Recovery and Rheological Properties When Dewatering Clay-Based Tailings

    No full text
    In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at a pH > 10.5, and raising the pH of seawater leads to magnesium precipitates that adversely affect subsequent tailings dewatering. Seawater pre-treatment with lime can precipitate the majority of magnesium present, with these solids then being removed by filtration. To understand how such treatment may aid tailings dewatering, treated seawater (TSw) was mixed with raw seawater (Rsw) at different ratios, analyzing the impact on the flocculated settling rate, aggregate size as measured by focused beam reflectance measurement (FBRM), and vane yield stress for two synthetic clay-based tailings. A higher proportion of Tsw (10 mg/L Mg2+) led to larger aggregates and higher settling rates at a fixed dosage, with FBRM suggesting that higher calcium concentrations in Tsw may also favor fines coagulation. The yield stress of concentrated suspensions formed after flocculation decreased with higher proportions of Tsw, a consequence of lower flocculant demand and the reduced presence of precipitates; while the latter is a minor phase by mass, their high impact on rheology reflects a small particle size. Reducing magnesium concentrations in seawater in advance of use in processing offers advantages in the water return from thickening and subsequent underflow transport. However, this may not require complete removal, with blending Tsw and Rsw an option to obtain acceptable industrial performance

    Lime/Sodium Carbonate Treated Seawater to Improve Flocculation and Sedimentation of Clay-Based Tailings

    No full text
    Seawater treated with lime and sodium carbonate in different proportions to reduce magnesium and calcium contents is used in flocculation and sedimentation tests of artificial quartz and kaolin tailings. Solid complexes were separated from water by vacuum filtration, and factors such as lime/sodium carbonate ratio, kaolin content, flocculation time, and flocculant dose are evaluated. The growth of the aggregates was captured in situ by a focused beam reflectance measurement (FBRM) probe. Solid magnesium and calcium complexes are formed in raw seawater at pH 11, impairing the performance of flocculant polymers based on polyacrylamides. The results show that the settling rate improved when the treatment’s lime/sodium carbonate ratio increased. That is, when a greater removal of magnesium is prioritized over calcium. The amount of magnesium required to be removed depends on the mineralogy of the system: more clay will require more significant removal of magnesium. These results respond to the structural changes of the flocs, achieving that the more magnesium is removed, the greater the size and density of the aggregates. In contrast, calcium removal does not significantly influence flocculant performance. The study suggests the necessary conditions for each type of tailing to maximize water recovery, contributing to the effective closure of the water cycle in processes that use seawater with magnesium control

    A Criterion for Estimating the Strength of Flocculated Aggregates in Salt Solutions

    No full text
    A simple criterion is proposed to quantitatively estimate the resistance of aggregates based on incremental mechanical shear disturbances. Aggregate strength can be affected by the hydrodynamic conditions under which flocculation occurs; therefore, an experimental method is standardized to determine the resistance of aggregate structures that are formed under defined conditions of salinity (NaCl 0–0.1 M), mixing time (3 min), and mean shear rate (G = 273 s−1). Kaolin particles were flocculated in saline solutions with an anionic flocculant of high molecular weight. The method involves increasing the mean shear rate (G = 0–1516 s−1). Each increment represents a new experiment that starts from the base of 273 s−1. Target aggregates are increasingly fragmented as mechanical disturbance increases. The monotonic relationship between the mean shear rate increments (ΔG) and the final size of the aggregates is used for a quantitative estimate of the resistance of the target aggregates since this resistance underlies this relationship. The evolution of aggregate size is analyzed by the Focused Beam Reflectance Measurement (FBRM) method, which may capture the chord length distribution on concentrated slurries. To estimate and compare the resistance of the target aggregates in solutions with different salinities, a pseudo-first-order model that describes the rupture degree as a function of shear rate increments obtains the characteristic shear rate. The rupture percentage is reached with considerably lower agitation increments at higher salinity than at low salinity. This criterion is expected to help improve the efficiency of solid–liquid separation processes, especially in plants operating with seawater, be it raw or partially desalinated

    Estimating the Shear Resistance of Flocculated Kaolin Aggregates: Effect of Flocculation Time, Flocculant Dose, and Water Quality

    No full text
    The resistance of kaolin aggregates to shearing in water clarification and recovery operations is a critical input in designing thickener feed wells. A recently formulated but already available criterion is used to determine the shear strength of flocculated kaolin aggregates. The flocculant is a high molecular weight anionic polyelectrolyte. The resistance of the aggregates is evaluated as a function of flocculation time, flocculant dosage, and water quality. The determination is based on a standardized experimental method. First, the time evolution of the average size of kaolin flocs is measured when aggregates are exposed to incremental shear rates from a predetermined base value. Then, the results are fitted to a pseudo-first-order model that allows deriving a characteristic value of the shear rate of rupture associated with the upper limit of the strength of the aggregates. In seawater, at a given dose of flocculant, the strength of the aggregates increases with time up to a maximum; however, at longer times, the resistance decreases until it settles at a stable value corresponding to stable aggregates in size and structure. A higher flocculant dosage leads to stronger aggregates due to more bridges between particles and polymers, leading to a more intricate and resistant particle network. In industrial water with very low salt content, the resistance of the kaolin aggregates is higher than in seawater for the same dose of flocculant. The salt weakens the resistance of the aggregates and works against the efficiency of the flocculant. The study should be of practical interest to concentration plants that use seawater in their operations

    Dissolution of pure chalcopyrite with manganese nodules and waste water

    No full text
    Chalcopyrite is the most abundant copper ore and, consequently, the most utilised to pro-duce metallic copper. The main route of treatment is through pyrometallurgical processes,but these emit significant quantities of SO2into the atmosphere (e.g. 182,000 t/year among allChilean smelters), producing mighty concern in the community. In this context, hydromet-allurgy is presented as an alternative that may be more environmentally friendly; however,the difficulties of processing sulphide minerals prevent achieving sustainable efficienciesfor the industry. In this research, a pure chalcopyrite mineral is leached at 25◦C with theaddition of manganese nodules as an oxidizing agent, and wastewater with a high con-centration of chloride that both enhances the dissolution and avoid the passivation of thechalcopyrite. The high concentrations of MnO2(4/1 and 5/1) allows that the potential valuescan be between 580 and 650 mV, which favors the dissolution of CuFeS2. The XRD showedthe formation of non-polluting species and, besides, they do not cause obstacles to the cop-per dissolution. High concentrations of chloride enable increasing copper solutions fromCuFeS2, attaining favorable outcomes when working with wastewater instead of seawater.The authors are grateful for the contribution of the Scien-tific Equipment Unit- MAINI of the Universidad Católica delNorte for aiding in generating data by automated electronicmicroscopy QEMSCAN®and for facilitating the chemical anal-ysis of the solutions. We are also grateful to Marina VargasAleuy, María Barraza Bustos and Carolina Ossandón Cortésof the Universidad Católica del Norte for supporting theexperimental tests. R.I.J thanks Centro CRHIAM Project Coni-cyt/Fondap/15130015
    corecore