5 research outputs found

    Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina

    Get PDF
    In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination

    Intravitreal administration of recombinant human opticin protects against hyperoxia-induced pre-retinal neovascularization

    Get PDF
    Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression

    Late neuroprogenitors contribute to normal retinal vascular development in aHif2a-dependent manner

    Get PDF
    In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of their critical relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). ByCre-loxgene excision, we show thatHif2ain retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence ofHif2ain retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a critical component of the developing neurovascular unit

    Ageing and neuronal vulnerability

    No full text

    Serotonergic vulnerability and depression: assumptions, experimental evidence and implications

    No full text
    corecore