6 research outputs found

    Antifungal Activities of Tacrolimus and Azole Agents against the Eleven Currently Accepted Malassezia Species

    No full text
    The lipophilic yeast Malassezia is an exacerbating factor in atopic dermatitis (AD) and colonizes the skin surface of patients with AD. With the goal of reducing the number of Malassezia cells, we investigated the antifungal activities of a therapeutic agent for AD, tacrolimus, and the azole agents itraconazole and ketoconazole against Malassezia species in vitro. We examined 125 strains of the 11 currently accepted Malassezia species by using the agar dilution method. All strains of the 11 Malassezia species were very susceptible to both azole agents, with MICs ranging from 0.016 to 0.25 μg/ml. Tacrolimus had antifungal activities against half of the strains, with MICs ranging from 16 to 32 μg/ml. Two of the major cutaneous floras, Malassezia globosa and Malassezia restricta, have several genotypes in the intergenic spacer region of the rRNA gene; the azole agents had slightly higher MICs for specific genotype strains of both microorganisms. A combination of azole agents and tacrolimus had a synergistic effect against Malassezia isolates, based on a fractional inhibitory index of 0.245 to 0.378. Our results provide the basis for testing these agents in future clinical trials to reduce the number of Malassezia cells colonizing the skin surface in patients with AD

    Sequence Diversity of the Intergenic Spacer Region of the rRNA Gene of Malassezia globosa Colonizing the Skin of Patients with Atopic Dermatitis and Healthy Individuals

    No full text
    The lipophilic yeast Malassezia globosa is one of the major constituents of the mycoflora of the skin of patients with atopic dermatitis (AD). We compared the genotypes of M. globosa colonizing the skin surface of 32 AD patients and 20 healthy individuals for polymorphism of the intergenic spacer (IGS) 1 region of the rRNA gene. Sequence analysis demonstrated that M. globosa was divided into four major groups, which corresponded to the sources of the samples, on the phylogenetic tree. Of the four groups, two were from AD patients and one was from healthy subjects. The remaining group included samples from both AD patients and healthy subjects. In addition, the IGS 1 region of M. globosa contained short sequence repeats: (CT)(n), and (GT)(n). The number of sequence repeats also differed between the IGS 1 of M. globosa from AD patients and that from healthy subjects. These findings suggest that a specific genotype of M. globosa may play a significant role in AD, although M. globosa commonly colonizes both AD patients and healthy subjects
    corecore