705 research outputs found

    Effect of the Charged Pressure on GM Cryocooler Performance.

    Get PDF
    Presented at the 16th International Cryocooler Conference, held May 17-20, 2008 in Atlanta, Georgia.This paper presents experimental results that show that the refrigeration efficiency of GM refrigerators can be improved by applying a charged pressure. Recently, there has been remarkable progress in superconducting systems, such as magnetic resonance imaging systems, silicon singlecrystal pull-up apparatus, and cryopumps. GM cryocoolers are used to cool these systems because of their high reliability. Thus, to improve the efficiency of superconducting systems, it is important to improve the efficiency of GM cryocoolers. If the compression ratio of a GM cryocooler is reduced, its coefficient of performance (COP) will approach the Carnot COP, since the cryocooler will operate with Simon expansion. Therefore, we investigated the effect of varying the charged pressure of a cryocooler and the cycle frequency on its refrigeration efficiency. We developed a GM cryocooler that can be operated at various charged pressures and we measured its efficiency at various charged pressures and operating frequencies. The optimum charged pressure and operating frequency were determined by comparing the experimental results with numerical simulation results

    Quantum Fluctuation Theorems

    Full text link
    Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluctuating thermodynamic quantities. We review the recent progress in quantum fluctuation theorems, including the studies of Maxwell's demon which plays a crucial role in connecting thermodynamics with information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects and New Directions", (Springer International Publishing, 2018

    Moment-Generating Algorithm for Response Time in Processor Sharing Queueing Systems

    No full text
    Response times are arguably the most representative and important metric for measuring the performance of modern computer systems. Further, service level agreements (SLAs), ranging from data centres to smartphone users, demand quick and, equally important, predictable response times. Hence, it is necessary to calculate moments, at least, and ideally response time distributions, which is not straightforward. A new moment-generating algorithm for calculating response times analytically is obtained, based on M/M/1 processor sharing (PS) queueing models. This algorithm is compared against existing work on response times in M/M/1-PS queues and extended to M/M/1 discriminatory PS queues. Two real-world case studies are evaluated
    corecore