112 research outputs found

    A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage

    Get PDF
    The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1¿/¿ MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1

    Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    Get PDF
    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus

    IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia

    Get PDF
    T cells infected with human T-cell leukemia virus type 1 (HTLV-1) transform into malignant/leukemic cells and develop adult T-cell leukemia (ATL) after a long latency period. The tax (transactivator from the X-gene region) and HBZ (HTLV-1 bZIP factor) genes of HTLV-1 play crucial roles in the development of ATL. The process and mechanism by which HTLV-1-infected T cells acquire malignancy and develop ATL remain to be elucidated. Constitutive expression of interleukin-2 (IL-2) receptor α-chain (IL-2Rα/CD25), induced by the tax and HBZ genes of HTLV-1, on ATL cells implicates the involvement of IL-2/IL-2R pathway in the growth and development of ATL cells in vivo. However, the leukemic cells in the majority of ATL patients appeared unresponsive to IL-2, raising controversies on the role of this pathway for the growth of ATL cells in vivo. Here, we report the establishment of 32 IL-2-dependent T-cell lines infected with HTLV-1 from 26 ATL patients, including eight leukemic cell lines derived from five ATL patients, while no T-cell lines were established without IL-2. We have shown that the IL-2-dependent ATL cell lines evolved into IL-2-independent/-unresponsive growth phase, resembling ATL cells in vivo. Moreover, the IL-2-dependent non-leukemic T-cell lines infected with HTLV-1 acquired IL-2-independency and turned into tumor-producing cancer cells as with the ATL cell lines. HTLV-1-infected T cells in vivo could survive and proliferate depending on IL-2 that was produced in vivo by the HTLV-1-infected T cells of ATL patients and patients with HTLV-1-associated diseases and, acts as a physiological molecule to regulate T-cell growth. These results suggest that ATL cells develop among the HTLV-1-infected T cells growing dependently on IL-2 and that most of the circulating ATL cells progressed to become less responsive to IL-2, acquiring the ability to proliferate without IL-2

    Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells

    Get PDF
    BACKGROUND: Many lines of evidence suggest that poly(ADP-ribose) polymerase-1 (Parp-1) is involved in transcriptional regulation of various genes as a coactivator or a corepressor by modulating chromatin structure. However, the impact of Parp-1-deficiency on the regulation of genome-wide gene expression has not been fully studied yet. RESULTS: We employed a microarray analysis covering 12,488 genes and ESTs using mouse Parp-1-deficient (Parp-1(-/-)) embryonic stem (ES) cell lines and the livers of Parp-1(-/- )mice and their wild-type (Parp-1(+/+)) counterparts. Here, we demonstrate that of the 9,907 genes analyzed, in Parp-1(-/- )ES cells, 9.6% showed altered gene expression. Of these, 6.3% and 3.3% of the genes were down- or up-regulated by 2-fold or greater, respectively, compared with Parp-1(+/+ )ES cells (p < 0.05). In the livers of Parp-1(-/- )mice, of the 12,353 genes that were analyzed, 2.0% or 1.3% were down- and up-regulated, respectively (p < 0.05). Notably, the number of down-regulated genes was higher in both ES cells and livers, than that of the up-regulated genes. The genes that showed altered expression in ES cells or in the livers are ascribed to various cellular processes, including metabolism, signal transduction, cell cycle control and transcription. We also observed expression of the genes involved in the pathway of extraembryonic tissue development is augmented in Parp-1(-/- )ES cells, including H19. After withdrawal of leukemia inhibitory factor, expression of H19 as well as other trophoblast marker genes were further up-regulated in Parp-1(-/- )ES cells compared to Parp-1(+/+ )ES cells. CONCLUSION: These results suggest that Parp-1 is required to maintain transcriptional regulation of a wide variety of genes on a genome-wide scale. The gene expression profiles in Parp-1-deficient cells may be useful to delineate the functional role of Parp-1 in epigenetic regulation of the genomes involved in various biological phenomena

    Blood Rheology and Platelet Function in Untreated Early-Stage Essential Hypertensives Complicated with Metabolic Syndrome

    Get PDF
    We examined whether hemorheology and platelet function are affected in essential hypertensives (EHTs) of the World Health Organization stage I when complicated with metabolic syndrome (Mets). In 156 untreated EHTs, blood viscosity and platelet surface markers were determined. Blood viscosity was significantly elevated in 54 subjects with Mets compared with 102 subjects without Mets. Hematocrit and plasma viscosity increased in the group with Mets, although red blood cell rigidity index “k” did not differ between groups. As a whole group, blood viscosity correlated positively with hematocrit and plasma viscosity. Additionally, plasma viscosity correlated positively with plasma leptin, triglyceride, homeostasis model assessment index, C-reactive protein, and plasma fibrinogen, but negatively with high-density lipoprotein cholesterol. In contrast, no differences were seen in platelet surface markers between groups. In conclusion, EHTs of the early stage complicated with Mets are characterized by increased blood viscosity due to hemoconcentration and increased plasma viscosity

    Thioredoxin-interacting protein suppresses bladder carcinogenesis.

    Get PDF
    Thioredoxin-interacting protein (TXNIP), which has a tumor-suppressive function, is underexpressed in some human cancers. The function of TXNIP in vivo in carcinogenesis is not fully understood. Here, we show TXNIP to be downregulated in human bladder cancer according to grade and stage and also that loss of TXNIP expression facilitates bladder carcinogenesis using a mouse bladder cancer model. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer was found in 100% of Txnip knockout (KO) mice at week 8 of 0.025% BBN administration but in only 22% of wild-type (WT) mice at the same point. Among growth stimulators, phospho-extracellular signal-regulated kinase (pERK) expression was stronger during bladder carcinogenesis in Txnip-KO mice than in WT mice. We then evaluated TXNIP's effects on ERK activation through various growth stimulators and their receptors. Overexpression of TXNIP in human bladder cancer cells attenuated pERK expression upon stimulation with stromal cell-derived factor-1 (SDF-1) but not with epidermal growth factor or insulin-like growth factor-1. In Txnip-KO mice, immunohistochemical analysis showed enhanced expression of C-X-C chemokine receptor type 4 (CXCR4), the receptor of SDF-1, and of pERK in urothelial cells during BBN-induced bladder carcinogenesis. Finally, subcutaneous injection of CXCR4 antagonist, TF14016, attenuated pERK in urothelial cells and suppressed bladder carcinogenesis. These data indicate that TXNIP negatively regulates bladder carcinogenesis by attenuating SDF-1-CXCR4-induced ERK activation. This signal transduction pathway can be a potent target in preventing or treating bladder cancer

    Extracellular Release of HMGB1 as an Early Potential Biomarker for the Therapeutic Response in a Xenograft Model of Boron Neutron Capture Therapy

    Get PDF
    Boron neutron capture therapy (BNCT) is a non-invasive therapeutic technique for treating malignant tumors, however, methods to evaluate its therapeutic efficacy and adverse reactions are lacking. High mobility group box 1 (HMGB1) is an inflammatory molecule released during cell death. Therefore, we aimed to investigate HMGB1 as a biomarker for BNCT response, by examining the early responses of tumor cells to 10B-boronophenylalanine (BPA)-based BNCT in the Kyoto University Nuclear Reactor. Extracellular HMGB1 release was significantly increased in human squamous carcinoma SAS and melanoma A375 cells 24 h after neutron irradiation but not after γ-irradiation. At 3 days post-BPA-based BNCT irradiation in a SAS xenograft mouse model, plasma HMGB1 levels were higher than those in the non-irradiation control, and HMGB1 was detected in both nuclei and cytoplasm in tumor cells. Additionally, increased plasma HMGB1 levels post-BNCT irradiation were detected even when tumors decreased in size. Collectively, these results indicate that the extracellular HMGB1 release occurs at an early stage and is persistent when tumors are reduced in size; therefore, it is a potential biomarker for evaluating the therapeutic response during BNCT

    Deficiency of Thioredoxin Binding Protein-2 (TBP-2) Enhances TGF-β Signaling and Promotes Epithelial to Mesenchymal Transition

    Get PDF
    Transforming growth factor beta (TGF-β) has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1) is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression

    TXNIP induces growth arrest and enhances ABT263‐induced apoptosis in mixed‐lineage leukemia‐rearranged acute myeloid leukemia cells

    Get PDF
    Thioredoxin‐interacting protein (TXNIP) has been widely recognized as a tumor suppressor in various cancers, including liver, breast, and thyroid cancers. Although TXNIP is epigenetically silenced in acute myeloid leukemia (AML) cells, as in many cancer cells, its role in leukemogenesis remains elusive. Mixed‐lineage leukemia (MLL) gene rearrangements in AML are associated with poor prognosis, and the development of a new treatment method is eagerly anticipated. In this study, we first reveal that lower expression of TXNIP is correlated with shortened overall survival periods in AML patients. Moreover, we demonstrated that TXNIP overexpression significantly suppresses proliferation in AML cells harboring MLL fusion genes. TXNIP promotes autophagy by increasing expression of the autophagy protein, Beclin 1, and lipidation of LC3B. We also show that TXNIP overexpression combined with ABT263, a potent inhibitor of Bcl‐2 and Bcl‐xL, is highly effective at inducing cell death in MLL‐rearranged (MLL‐r) AML cells. In summary, this study provides insights into the molecular mechanism of TXNIP‐mediated tumor suppression and furthermore underscores the potential of TXNIP as a promising therapeutic target for MLL‐r AML
    corecore