30 research outputs found

    Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    Get PDF
    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site

    Source Identification and Behavior of PCDD/Fs and Dioxin-like PCBs in Japanese River Water

    No full text

    Organ-specific accumulation of toxic elements in Hilsa shad (Tenualosa ilisha) from Bangladesh and human health risk assessment

    No full text
    Purpose: We aimed to determine the amount of some toxic elements in three organs of Hilsa shad, focusing on the possible exposure to human health through Hilsa consumption. This study was designed to determine the concentration of seven toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) in three distinct organs (n = 21) (muscle, liver, and gills) of Hilsa shad (Tenualosa ilisha) fish collected from the Bangladeshi coastal area. The samples were digested following a microwave digestion. Inductively coupled plasma mass spectrometer was used as analytical instrument. Estimated daily intakes (EDI) and target cancer risk (TR) were used to evaluate carcinogenic and non-carcinogenic risk.Results: The mean concentrations (mg/kg-wet weight) of toxic elements in different organs of T. ilisha were determined as follows: in muscle, As (4.05), Cd (0.09), Cr (0.12), Cu (0.77), Ni (0.26), Pb (0.20), and Zn (10.64); in liver, As (2.83), Cd (0.84), Cr (0.18), Cu (6.17), Ni (0.55), Pb (0.23), and Zn (30.16) and in gills, As (3.45), Cd (0.05), Cr (0.08), Cu (1.06), Ni (0.51), Pb (0.78), and Zn (35.21). The liver showed higher concentrations of most elements than that of muscle except for As. Concentration of As, Cd, and Pb in the fish were found above the food safety guidelines, while other trace element concentrations were below the permissible range for human consumption. According to EDI and TR values, there were carcinogenic and non-carcinogenic risks from exposure to total As concentration from Hilsa fish consumption.Conclusion: This study suggests that the toxic trace elements contamination levels in Hilsa fish from Bangladesh’s coastal area need to be monitored on a systematic and regular basis to ensure the safety of this food item for human consumption

    Persistent Organic Chemicals in the Environment: Status and Trends in the Pacific Basin Countries I Contamination Status

    No full text
    Environmental pollution by man-made Persistent Organic Chemicals (POCs) has been a serious global issue for over half a century. Exposure to POCs may result in health effects, including, endocrine disruption leading to birth defects, intellectual disability, low testosterone, childhood obesity, autism and attention deficit hyperactivity disorder (ADHD). Therefore, POCs have been the subject of an intensive regional, national, and international efforts to limit the production, use, and disposal of these chemicals. Since POCs are ubiquitous and recalcitrant, and cause long-term effects on wildlife and humans, trend monitoring studies are valuable in making clear the behavior and fate of these compounds and to protect our environment and living resources. The Pacific Basin is a unique geographical region representing tropical, temperate and polar zones. This region is home to 2/3 of the world’s population and consists of rapidly growing economies (countries) and highly developed countries. Due to this diversity of climatic and socio-economic conditions, environment and biota in different countries in this basin have varying degrees of environmental contamination and effects on wildlife and humans. The Pacific Rim countries play a pivotal role in governing global POC contamination and resulting harmful health effects. Because articles on POCs and their effect on environment and health are published in a large number of different journals, it is useful to have a book that includes original papers and reviews on the latest advances by well-known scientists in the field, especially focusing on the countries in the Pacific Rim
    corecore