3 research outputs found

    Glycolate is a Novel Marker of Vitamin B2 Deficiency Involved in Gut Microbe Metabolism in Mice

    Get PDF
    Microbes in the human gut play a role in the production of bioactive compounds, including some vitamins. Although several studies attempted to identify definitive markers for certain vitamin deficiencies, the role of gut microbiota in these deficiencies is unclear. To investigate the role of gut microbiota in deficiencies of four vitamins, B2, B6, folate, and B12, we conducted a comprehensive analysis of metabolites in mice treated and untreated with antibiotics. We identified glycolate (GA) as a novel marker of vitamin B2 (VB2) deficiency, and show that gut microbiota sense dietary VB2 deficiency and accumulate GA in response. The plasma GA concentration responded to reduced VB2 supply from both the gut microbiota and the diet. These results suggest that GA is a novel marker that can be used to assess whether or not the net supply of VB2 from dietary sources and gut microbiota is sufficient. We also found that gut microbiota can provide short-term compensation for host VB2 deficiency when dietary VB2 is withheld

    Metabolic Changing in V. vulnificus-Infected Tissue

    Get PDF
    Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle
    corecore