17 research outputs found
Pharmacokinetics of single domain antibodies and conjugated nanoparticles using a hybrid near infrared method
Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under basal circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents
Bisphosphonate Functionalized Gadolinium Oxide Nanoparticles Allow Long-Term MRI/CT Multimodal Imaging of Calcium Phosphate Bone Cement
Direct in vivo monitoring of bioconstructs using noninvasive imaging modalities such as magnetic resonance imaging (MRI) or computed tomography (CT) is not possible for many materials. Calcium phosphate–based composites (CPCs) that are applicable to bone regeneration are an example where the materials have poor MRI and CT contrast; hence, they are challenging to detect in vivo. In this study, a CPC construct is designed with gadolinium-oxide nanoparticles incorporated to act as an MRI/CT multimodal contrast agent. The gadolinium(III) oxide nanoparticles are synthesized via the polyol method and surface functionalized with a bisphosphonate (BP) derivative to give a construct (gadolinium-based contrast agents (GBCAs)-BP) with strong affinity toward calcium phosphate. The CPC-GBCAs-BP functional material is longitudinally monitored after in vivo implantation in a condyle defect rat model. The synthetic method developed produces nanoparticles that are stable in aqueous solution (hydrodynamic diameter 70 nm) with significant T1and T2relaxivity demonstrated in both clinical 3 T and preclinical 11.7 T MRI systems. The combination of GBCAs-BP nanoparticles with CPC gives an injectable material with handling properties that are suitable for clinical applications. The BP functionalization prolongs the residence of the contrast agent within the CPC to allow long-term follow-up imaging studies. The useful contrast agent properties combined with biological compatibility indicate further investigation of the novel bone substitute hybrid material toward clinical application
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
Sensitive detection of extremely small iron oxide nanoparticles in living mice using MP2RAGE with advanced image co-registration
Abstract Magnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared—RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test–retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents
Perfluorocarbon/Gold Loading for Noninvasive in Vivo Assessment of Bone Fillers Using <sup>19</sup>F Magnetic Resonance Imaging and Computed Tomography
Calcium
phosphate cement (CPC) is used in bone repair because of
its biocompatibility. However, high similarity between CPC and the
natural osseous phase results in poor image contrast in most of the
available in vivo imaging techniques such as computed tomography (CT)
and magnetic resonance imaging (MRI). For accurate identification
and localization during and after implantation in vivo, a composition
with enhanced image contrast is needed. In this study, we labeled
CPC with perfluoro-15-crown-5-ether-loaded (PFCE) poly(latic-<i>co</i>-glycolic acid) nanoparticles (hydrodynamic radius 100
nm) and gold nanoparticles (diameter 40 nm), as <sup>19</sup>F MRI
and CT contrast agents, respectively. The resulting CPC/PFCE/gold
composite is implanted in a rat model for in vivo longitudinal imaging.
Our findings show that the incorporation of the two types of different
nanoparticles did result in adequate handling properties of the cement.
Qualitative and quantitative long-term assessment of CPC/PFCE/gold
degradation was achieved in vivo and correlated to the new bone formation.
Finally, no adverse biological effects on the bone tissue are observed
via histology. In conclusion, an easy and efficient strategy for following
CPC implantation and degradation in vivo is developed. As all materials
used are biocompatible, this CPC/PFCE/gold composite is clinically
applicable