66 research outputs found
Performances and future plans of the LHC RF
The ramp-up of the LHC operation has been exceptionally fast: from the first acceleration of a single bunch at nominal intensity (1.1E11 p) to 3.5 TeV/c on May 2010, to the accumulation of 11 fb-1 integrated luminosity two years later (June 2012). On the RF side this was made possible by a few key design choices and several developments, that allow reliable LHC operation with 0.35 A DC beam at 4 TeV/c (1380 bunches at 50 ns spacing, 1.5E11 p per bunch). This paper reviews the RF design and presents its performance. Plans are also outlined that would allow operation with 25 ns bunch spacing (doubling the beam current) and even increased bunch intensity with the target of above 1A DC current per beam, without big modification to the existing RF power system
LHC One-Turn Delay Feedback Commissioning
The LHC One-Turn delay FeedBack (OTFB) is an FPGA based feedback system part of the LHC cavity controller, which produces gain only around the revolution frequency (frev = 11.245 kHz) harmonics. As such, it helps reduce the transient beam loading and effective cavity impedance. Consequently, it increases the stability margin for Longitudinal Coupled Bunch Instabilities driven by the cavity impedance at the fundamental and allows reliable operation at higher beam currents. The OTFB was commissioned on all sixteen cavities in mid-October 2011 and has been used in operation since. The commissioning procedure and algorithms for setting-up are presented. The resulting improvements in transient beam loading, beam stability, and required klystron power are analyzed. The commissioning of the OTFB reduced the cavity voltage phase modulation from approximately six degrees peak-to-peak to below one degree at 400 MHz with nominal bunch intensity of 1.1e11 protons
Proposal for an RF Roadmap Towards Ultimate Intensity in the LHC
The LHC currently operates with 1380 bunches at 50 ns spacing and 1.4 1011 p per bunch (0.35A DC). In this paper the RF operation with ultimate bunch intensity (1.7 1011 p per bunch) and 25 ns spacing (2808 bunches per beam) summing up to 0.86A DC is presented. With the higher beam current, the demanded klystron power will be increased and the longitudinal stability margin reduced. One must also consider the impact of a klystron trip (voltage and power transients in the three turns latency before the beam is actually dumped). In this work a scheme is proposed that can deal with ultimate bunch intensity. Only a minor upgrade of the Low Level RF is necessary: the field set point will be modulated according to the phase shift produced by the transient beam loading, thus minimizing the RF power while keeping the strong feedback for stability and reduction of the RF noise
Synchronous Phase Shift at LHC
The electron cloud in vacuum pipes of accelerators of positively charged
particle beams causes a beam energy loss which could be estimated from the
synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns
bunch spacing in the LHC for some fills in 2010 and 2011 show that the average
energy loss depends on the total beam intensity in the ring. Later measurements
during the scrubbing run with 50 ns beams show the reduction of the electron
cloud due to scrubbing. Finally, measurements of the individual bunch phase
give us information about the electron cloud build-up inside the batch and from
batch to batch.Comment: Presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on
Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 201
Studies of RF Noise Induced Bunch Lengthening at the LHC
Radio Frequency noise induced bunch lengthening can strongly affect the Large Hadron Collider performance through luminosity reduction, particle loss, and other effects. Models and theoretical formalisms demonstrating the dependence of the LHC longitudinal bunch length on the RF station noise spectral content have been presented*,**. Initial measurements validated these studies and determined the performance limiting RF components. For the existing LHC LLRF implementation the bunch length increases with a rate of 1 mm/hr, which is higher than the intrabeam scattering diffusion and leads to a 27% bunch length increase over a 20 hour store. This work presents measurements from the LHC that better quantify the relationship between the RF noise and longitudinal emittance blowup. Noise was injected at specific frequency bands and with varying amplitudes at the LHC accelerating cavities. The experiments presented in this paper confirmed the predicted effects on the LHC bunch length due to both the noise around the synchrotron frequency resonance and the noise in other frequency bands aliased down to the synchrotron frequency by the periodic beam sampling of the accelerating voltage
Longitudinal Emittance Blow-Up in the LHC
The LHC relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blow-up provides the required emittance growth. The method was implemented through the summer of 2010. We inject band-limited RF phase-noise in the main accelerating cavities during the whole ramp of about 11 minutes. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2 ns (4 ) at flat top with low bunch-to-bunch scatter and provides a stable beam for physics coast
Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting
Loss of Landau Damping in the LHC
Loss of Landau damping leading to a single bunch longitudinal instability has been observed in the LHC during the ramp and on the 3.5 TeV flat top for small injected longitudinal emittances. The first measurements are in reasonable agreement with the threshold calculated for the expected longitudinal reactive impedance budget of the LHC as well as with the threshold dependence on beam energy. The cure is a controlled longitudinal emittance blow-up during the ramp which for a constant threshold through the cycle should provide an emittance proportional to the square root of energy
Investigations of the LHC Emittance Blow-Up During the 2012 Proton Run
About 30 % of the potential luminosity performance is lost through the different phases of the LHC cycle, mainly due to transverse emittance blow-up. Measuring the emittance growth is a difficult task with high intensity beams and changing energies. Improvements of the LHC transverse profile instrumentation helped to study various effects. A breakdown of the growth through the different phases of the LHC cycle is given as well as a comparison with the data from the LHC experiments for transverse beam size. In 2012 a number of possible sources and remedies have been studied. Among these are intra beam scattering, 50 Hz noise and the effect of the transverse damper gain. The results of the investigations are summarized in this paper. Requirements for transverse profile instrumentation for post LHC long shutdown operation to finally tackle the emittance growth are given as well
Patient-reported barriers to accepting a technological adherence package in the MAGNIFY trial.
Peer reviewedPostprin
- âŠ