4,694 research outputs found

    Exploring Photometric Redshifts as an Optimization Problem: An Ensemble MCMC and Simulated Annealing-Driven Template-Fitting Approach

    Get PDF
    Using a grid of 2\sim 2 million elements (Δz=0.005\Delta z = 0.005) adapted from COSMOS photometric redshift (photo-z) searches, we investigate the general properties of template-based photo-z likelihood surfaces. We find these surfaces are filled with numerous local minima and large degeneracies that generally confound rapid but "greedy" optimization schemes, even with additional stochastic sampling methods. In order to robustly and efficiently explore these surfaces, we develop BAD-Z [Brisk Annealing-Driven Redshifts (Z)], which combines ensemble Markov Chain Monte Carlo (MCMC) sampling with simulated annealing to sample arbitrarily large, pre-generated grids in approximately constant time. Using a mock catalog of 384,662 objects, we show BAD-Z samples 40\sim 40 times more efficiently compared to a brute-force counterpart while maintaining similar levels of accuracy. Our results represent first steps toward designing template-fitting photo-z approaches limited mainly by memory constraints rather than computation time.Comment: 14 pages, 8 figures; submitted to MNRAS; comments welcom

    Groups of Galaxies in the Two Micron All-Sky Redshift Survey

    Get PDF
    We present the results of applying a percolation algorithm to the initial release of the Two Micron All-Sky Survey Extended Source Catalog, using subsequently measured redshifts for almost all of the galaxies with K < 11.25 mag. This group catalog is based on the first near-IR all-sky flux-limited survey that is complete to |b| = 5 deg. We explore the dependence of the clustering on the length and velocity scales involved. The paper describes a group catalog, complete to a limiting redshift of 10,000 km/s, created by maximizing the number of groups containing 3 or more members. A second catalog is also presented, created by requiring a minimum density contrast of 80 to identify groups. We identify known nearby clusters in the catalogs and contrast the groups identified in the two catalogs. We examine and compare the properties of the determined groups and verify that the results are consistent with the UZC-SSRS2 and northern CfA redshift survey group catalogs. The all-sky nature of the catalog will allow the development of a flow-field model based on the density field inferred from the estimated cluster masses.Comment: Accepted for publication in ApJ (29 pages including 13 figures). A version with high-resolution figures is available at http://www.cfa.harvard.edu/~acrook/preprints

    Clarifying Assumptions about Intraoperative Stress during Surgical Performance: More Than a Stab in the Dark: Reply

    Get PDF
    Ó The Author(s) 2011. This article is published with open access at Springerlink.com We thank Dr. Ali for his concise annotation of our efforts to validate a tool that evaluates mental workload in surgery [1, 2]. Unlike other safety critical domains, the field of surgery has been slow to acknowledge the impact of intraoperative stress on surgical performance, but recently a sea change has been triggered by authorities in the field of surgical education [3]. We agree with Ali that stress is not by default detrimental to performance. Our aim was to develop a diagnostic tool that identifies the factors that contribute to disrupted performance, should it occur. Indeed, studies of the effects of acute stress on operating performance have shown considerable variability, ranging from no effect to either facilitative or debilitative effects [3–5]. The Yerkes-Dodson law emerged from the earliest attempts to explain the relationship between physiological arousal and performance, but it has been criticized for treating stress as a unitary construct, influenced solely by physiological factors [6]. More recently, Catastrophe Theory has been invoked to model the relationship, using both physiological and psychological (cognitive anxiety) components of stress [7]. The model proposes that physiological arousal displays a mild inverted-U relationship with performance when cognitive anxiety is low, but that catastrophic declines in performance can occur if both physiological arousal and cognitive anxiety are high. Recent surgical literature has elucidated the complexity of M. Wilson (&amp;
    corecore