3,363 research outputs found

    The print as Proustian Madeleine

    Get PDF
    Not Include

    Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

    Full text link
    Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR

    Observation of lobes near the X-point in resonant magnetic perturbation experiments on MAST

    Full text link
    The application of non-axisymmetric resonant magnetic perturbations (RMPs) with a toroidal mode number n=6 in the MAST tokamak produces a significant reduction in plasma energy loss associated with type-I Edge Localized Modes (ELMs), the first such observation with n>3. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. These lobes or manifold structures, that were predicted previously, have been observed for the first time in a range of discharges and their appearance is correlated with the effect of RMPs on the plasma i.e. they only appear above a threshold when a density pump out is observed or when the ELM frequency is increased. They appear to be correlated with the RMPs penetrating the plasma and may be important in explaining why the ELM frequency increases. The number and location of the structures observed can be well described using vacuum modelling. Differences in radial extent and poloidal width from vacuum modelling are likely to be due to a combination of transport effects and plasma screening.Comment: 15 pages, 5 figure
    • …
    corecore