3,390 research outputs found
Recommended from our members
Cloned Access Point Detection and Point Detection and Prevention Mechanism in IEEE 802.11 Wireless Mesh Networks
IEEE 802.11 Wireless Mesh Network (WMN) is an
emerging low cost, decentralized community-based broadband technology, which is based on self-healing and multi-hop deployment of Access Points (APs), so that to increase the coverage area with maximum freedom to end-users to join or leave the
network from anywhere anytime having low deployment and maintenance cost. Such kind of decentralized structure and multihop architecture increases its security vulnerabilities especially
against the APs. One of such possible security attack is the placement of cloned AP to create serious performance degradation in IEEE 802.11 WMN. In this paper, we discuss the different
security vulnerabilities of AP in IEEE 802.11 WMN along with possible research directions. We also propose a mutual cooperation mechanism between the multi-hop APs and serving gateway so that
to detect and prevent the possibility of cloned AP. In this way the large scale exploitation of IEEE 802.11 WMN can be eliminated
Recommended from our members
Passive security threats and consequences in IEEE 802.11 wireless mesh networks
The Wireless Mesh Network (WMN) is ubiquitous emerging broadband wireless network. However, the open wireless medium, multi-hop multi-radio architecture and ad-hoc connectivity amongst end-users are such characteristics which increases the vulnerabilities of WMN towards many passive and active attacks. A secure network ensures the confidentiality, integrity and availability of wireless network. Integrity and availability is compromised by active attacks, while the confidentiality of end-users traffic is compromised by passive attacks. Passive attacks are silent in nature and do not harm the network traffic or normal network operations, therefore very difficult to detect. However, passive attacks lay down a foundation for later launching an active attack. In this article, we discuss the vulnerable features and possible passive threats in WMN along with current security mechanisms as well as future research directions. This article will serve as a baseline guide for the passive security threats and related issues in WMNs
Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST
Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show
that the inverse gradient scale length of the ion temperature R/LTi (normalized
to the major radius R) has its strongest local correlation with the rotational
shear and the pitch angle of the magnetic field (or, equivalently, an inverse
correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio).
Furthermore, R/LTi is found to be inversely correlated with the
gyro-Bohm-normalized local turbulent heat flux estimated from the density
fluctuation level measured using a 2D Beam Emission Spectroscopy (BES)
diagnostic. These results can be explained in terms of the conjecture that the
turbulent system adjusts to keep R/LTi close to a certain critical value
(marginal for the excitation of turbulence) determined by local equilibrium
parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR
Observation of lobes near the X-point in resonant magnetic perturbation experiments on MAST
The application of non-axisymmetric resonant magnetic perturbations (RMPs)
with a toroidal mode number n=6 in the MAST tokamak produces a significant
reduction in plasma energy loss associated with type-I Edge Localized Modes
(ELMs), the first such observation with n>3. During the ELM mitigated stage
clear lobe structures are observed in visible-light imaging of the X-point
region. These lobes or manifold structures, that were predicted previously,
have been observed for the first time in a range of discharges and their
appearance is correlated with the effect of RMPs on the plasma i.e. they only
appear above a threshold when a density pump out is observed or when the ELM
frequency is increased. They appear to be correlated with the RMPs penetrating
the plasma and may be important in explaining why the ELM frequency increases.
The number and location of the structures observed can be well described using
vacuum modelling. Differences in radial extent and poloidal width from vacuum
modelling are likely to be due to a combination of transport effects and plasma
screening.Comment: 15 pages, 5 figure
- …