85 research outputs found

    Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.

    No full text
    PURPOSE: To characterize rod and cone distribution, organization, and phagocytosis in the diurnal mouse-like rodent Arvicanthis ansorgei. METHODS: Retinas of adult A. ansorgei were processed for histology, electron microscopy and immunohistochemistry using rod- and mouse cone-specific antibodies. For phagocytosis studies, retinas were sampled every 3 hours under a 12-hour light-dark cycle and processed for double-label immunohistochemistry. The number of phagosomes in the retinal pigmented epithelium were quantified with a morphometric system. RESULTS: A. ansorgei retinas were composed of 33% cones and 67% rods, approximately 10 times more cones than mice and rats. Cones were arranged in two cell layers at the scleral surface, distributed uniformly across the entire retina. Cone arrestin was distributed throughout the dark-adapted cones, from outer segments to synapses, whereas short- and mid-wavelength cone opsins were restricted to outer segments. Short-wavelength cone density was mapped in wholemounted retinas, in a significantly higher number in the central region. Rhodopsin immunopositive (rod) phagosomes showed a small peak late in the dark phase, then a large burst 1 to 2 hours after light onset, after decreasing to low baseline levels by 12 AM. Mid-wavelength cone opsin immunopositive (cone) phagosomes were 10 times less numerous than rods, and demonstrated a broad peak 1 to 2 hours after light onset. CONCLUSIONS: The diurnal rodent A. ansorgei possesses a large number of cones, organized in a strict anatomic array. Rod and cone outer segment phagocytosis and shedding can be monitored simultaneously and show similar profiles but different amplitudes. This species may constitute a valuable novel animal model for investigating cone pathophysiology

    Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.

    No full text
    PURPOSE: To characterize rod and cone distribution, organization, and phagocytosis in the diurnal mouse-like rodent Arvicanthis ansorgei. METHODS: Retinas of adult A. ansorgei were processed for histology, electron microscopy and immunohistochemistry using rod- and mouse cone-specific antibodies. For phagocytosis studies, retinas were sampled every 3 hours under a 12-hour light-dark cycle and processed for double-label immunohistochemistry. The number of phagosomes in the retinal pigmented epithelium were quantified with a morphometric system. RESULTS: A. ansorgei retinas were composed of 33% cones and 67% rods, approximately 10 times more cones than mice and rats. Cones were arranged in two cell layers at the scleral surface, distributed uniformly across the entire retina. Cone arrestin was distributed throughout the dark-adapted cones, from outer segments to synapses, whereas short- and mid-wavelength cone opsins were restricted to outer segments. Short-wavelength cone density was mapped in wholemounted retinas, in a significantly higher number in the central region. Rhodopsin immunopositive (rod) phagosomes showed a small peak late in the dark phase, then a large burst 1 to 2 hours after light onset, after decreasing to low baseline levels by 12 AM. Mid-wavelength cone opsin immunopositive (cone) phagosomes were 10 times less numerous than rods, and demonstrated a broad peak 1 to 2 hours after light onset. CONCLUSIONS: The diurnal rodent A. ansorgei possesses a large number of cones, organized in a strict anatomic array. Rod and cone outer segment phagocytosis and shedding can be monitored simultaneously and show similar profiles but different amplitudes. This species may constitute a valuable novel animal model for investigating cone pathophysiology

    Functional and morphological organization of the cat sinoatrial node

    No full text
    The feline sinoatrial node has a unifocal impulse generation as previously described for rodents. Its main component is collagen. The primary pacemaker consists of at most 2000 cells, but appears to function normally with less than 500 cells. Primary pacemaker cells are found in the area where empty cells are predominant. A negative correlation between myofilament density and diastolic depolarization rate, known to exist in the rabbit and guinea-pig, is absent in the cat. Gap junctions are seen in the center and in the periphery of the nodal region, but they are extremely rare. The electrophysiological characteristics of the primary pacemaker of the cat are quite similar to those of the rabbit, although the nodal morphology is very different. Abrupt transitions from one cell type into another are observed in the feline sinoatrial node. From this morphological point of view the feline sinoatrial node resembles the canine and human sinoatrial nodes more than the lapine sinoatrial nod
    corecore