200 research outputs found
Integrated mutation, copy number and expression profiling in resectable non-small cell lung cancer
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify critical genes involved in non-small cell lung cancer (NSCLC) pathogenesis that may lead to a more complete understanding of this disease and identify novel molecular targets for use in the development of more effective therapies.</p> <p>Methods</p> <p>Both transcriptional and genomic profiling were performed on 69 resected NSCLC specimens and results correlated with mutational analyses and clinical data to identify genetic alterations associated with groups of interest.</p> <p>Results</p> <p>Combined analyses identified specific patterns of genetic alteration associated with adenocarcinoma vs. squamous differentiation; <it>KRAS </it>mutation; <it>TP53 </it>mutation, metastatic potential and disease recurrence and survival. Amplification of 3q was associated with mutations in <it>TP53 </it>in adenocarcinoma. A prognostic signature for disease recurrence, reflecting <it>KRAS </it>pathway activation, was validated in an independent test set.</p> <p>Conclusions</p> <p>These results may provide the first steps in identifying new predictive biomarkers and targets for novel therapies, thus improving outcomes for patients with this deadly disease.</p
p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors
Homology between p63 and p53 has suggested that these proteins might function similarly. However, the majority of data from human tumors have not supported a similar role for p63 in tumor suppression. To investigate this issue, we studied spontaneous tumorigenesis in p63+/- mice in both WT and p53-compromised backgrounds. We found that p63+/- mice were not tumor prone and mice heterozygous for both p63 and p53 had fewer tumors than p53+/- mice. The rare tumors that developed in mice with compromised p63 were also distinct from those of p53+/- mice. Furthermore, p63+/- mice were not prone to chemically induced tumorigenesis, and p63 expression was maintained in carcinomas. These findings demonstrate that, in agreement with data from human tumors, p63 plays a markedly different biological role in cancer than p53
Lung Adenocarcinoma of Never Smokers and Smokers Harbor Differential Regions of Genetic Alteration and Exhibit Different Levels of Genomic Instability
Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS
Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2βq29 in squamous cell carcinoma of the lung
<p>Abstract</p> <p>Background</p> <p>The underlying genetic alterations for squamous cell carcinoma (SCC) and adenocarcinoma (AC) carcinogenesis are largely unknown.</p> <p>Methods</p> <p>High-resolution array- CGH was performed to identify the differences in the patterns of genomic imbalances between SCC and AC of non-small cell lung cancer (NSCLC).</p> <p>Results</p> <p>On a genome-wide profile, SCCs showed higher frequency of gains than ACs (<it>p </it>= 0.067). More specifically, statistically significant differences were observed across the histologic subtypes for gains at 2q14.2, 3q26.2βq29, 12p13.2βp13.33, and 19p13.3, as well as losses at 3p26.2βp26.3, 16p13.11, and 17p11.2 in SCC, and gains at 7q22.1 and losses at 15q22.2βq25.2 occurred in AC (<it>P </it>< 0.05). The most striking difference between SCC and AC was gains at the 3q26.2βq29, occurring in 86% (19/22) of SCCs, but in only 21% (3/14) of ACs. Many significant genes at the 3q26.2βq29 regions previously linked to a specific histology, such as EVI1,<it>MDS1, PIK3CA </it>and <it>TP73L</it>, were observed in SCC (<it>P </it>< 0.05). In addition, we identified the following possible target genes (> 30% of patients) at 3q26.2βq29: <it>LOC389174 </it>(3q26.2),<it>KCNMB3 </it>(3q26.32),<it>EPHB3 </it>(3q27.1), <it>MASP1 </it>and <it>SST </it>(3q27.3), <it>LPP </it>and <it>FGF12 </it>(3q28), and <it>OPA1</it>,<it>KIAA022</it>,<it>LOC220729</it>, <it>LOC440996</it>,<it>LOC440997</it>, and <it>LOC440998 </it>(3q29), all of which were significantly targeted in SCC (<it>P </it>< 0.05). Among these same genes, high-level amplifications were detected for the gene, <it>EPHB3</it>, at 3q27.1, and <it>MASP1 </it>and <it>SST</it>, at 3q27.3 (18, 18, and 14%, respectively). Quantitative real time PCR demonstrated array CGH detected potential candidate genes that were over expressed in SCCs.</p> <p>Conclusion</p> <p>Using whole-genome array CGH, we have successfully identified significant differences and unique information of chromosomal signatures prevalent between the SCC and AC subtypes of NSCLC. The newly identified candidate target genes may prove to be highly attractive candidate molecular markers for the classification of NSCLC histologic subtypes, and could potentially contribute to the pathogenesis of the squamous cell carcinoma of the lung.</p
Longitudinal Associations Between Perceived Parent-Adolescent Attachment Relationship Quality and Generalized Anxiety Disorder Symptoms in Adolescence
This longitudinal study examined the direction of effects between adolescentsβ generalized anxiety disorder (GAD) symptoms and perceived parent-adolescent attachment relationship quality, as well as the moderating role of gender and age. 1,313 Dutch adolescents (48.5% boys) from two age cohorts of early (nβ=β923, Mageβ=β12 at W1) and middle (nβ=β390, Mageβ=β16 at W1) adolescents completed questionnaires regarding their attachment relationship to parents and GAD symptoms in four waves. Cross-lagged path analyses demonstrated that adolescentsβ GAD symptoms and perceived father-adolescent attachment relationship quality bidirectionally negatively affected each other over time. For mothers, adolescentsβ GAD symptoms negatively predicted perceived mother-adolescent attachment relationship quality over time. The within-wave correlated residuals between perceived attachment relationship quality with fathers and GAD symptoms were stronger for boys than for girls and stronger for the cohort of middle adolescents than for the cohort of early adolescents. This study demonstrates that both the parentsβ and the adolescentsβ gender as well as the adolescentsβ age affects the relation between adolescentsβ GAD symptoms and perceived parent-adolescent attachment relationship quality
Preferential Localization of Human Origins of DNA Replication at the 5β²-Ends of Expressed Genes and at Evolutionarily Conserved DNA Sequences
Replication of mammalian genomes requires the activation of thousands of
origins which are both spatially and temporally regulated by as yet unknown
mechanisms. At the most fundamental level, our knowledge about the
distribution pattern of origins in each of the chromosomes, among different
cell types, and whether the physiological state of the cells alters this
distribution is at present very limited.We have used standard Ξ»-exonuclease resistant nascent DNA preparations in
the size range of 0.7β1.5 kb obtained from the breast cancer cell line
MCFβ7 hybridized to a custom tiling array containing 50β60 nt
probes evenly distributed among genic and non-genic regions covering about
1% of the human genome. A similar DNA preparation was used for
high-throughput DNA sequencing. Array experiments were also performed with
DNA obtained from BT-474 and H520 cell lines. By determining the sites
showing nascent DNA enrichment, we have localized several thousand origins
of DNA replication. Our major findings are: (a) both array and DNA
sequencing assay methods produced essentially the same origin distribution
profile; (b) origin distribution is largely conserved (>70%) in
all cell lines tested; (c) origins are enriched at the 5β²ends of
expressed genes and at evolutionarily conserved intergenic sequences; and
(d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and
RNA Polymerase II chromatin binding sites at origins of DNA replication.Our results suggest that the program for origin activation is largely
conserved among different cell types. Also, our work supports recent studies
connecting transcription initiation with replication, and in addition
suggests that evolutionarily conserved intergenic sequences have the
potential to participate in origin selection. Overall, our observations
suggest that replication origin selection is a stochastic process
significantly dependent upon local accessibility to replication factors
Simultaneous blockade of AP-1 and phosphatidylinositol 3-kinase pathway in non-small cell lung cancer cells
c-Jun is a major constituent of AP-1 transcription factor that transduces multiple mitogen growth signals, and it is frequently overexpressed in non-small cell lung cancers (NSCLCs). Earlier, we showed that blocking AP-1 by the overexpression of a c-Jun dominant-negative mutant, TAM67, inhibited NSCLC cell growth. The phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathway is important in transformation, proliferation, survival and metastasis of NSCLC cells. In this study, we used NCI-H1299 Tet-on clone cells that express TAM67 under the control of inducible promoter to determine the effects of inhibition of AP-1 and PI3K on cell growth. The PI3K inhibitor, LY294002, produced a dose-dependent inhibition of growth in H1299 cells and that inhibition was enhanced by TAM67. TAM67 increased dephosphorylation of Akt induced by LY294002 and reduced the TPA response element DNA-binding of phosphorylated c-Jun. TAM67 increased G1 cell cycle blockade induced by LY294002, which was partially associated with cyclin A decrease and p27Kip1 accumulation. Furthermore, TAM67 and LY294002 act, at least additively, to inhibit anchorage-independent growth of the H1299 cells. These results suggest that AP-1 and PI3K/Akt pathways play an essential role in the growth of some NSCLC cells
Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate
<p>Abstract</p> <p>Background</p> <p>The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC), on tumor progression.</p> <p>Methods</p> <p>First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight) in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays.</p> <p>Results</p> <p>NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC group.</p> <p>Conclusion</p> <p>(1) A single dose of 25 mg/kg body weight NNK by intratracheal instillation is sufficient to induce preneoplastic lesions in Wistar rat lungs. (2) COX-2 takes part in NNK-induced tumorigenesis but is not involved in proliferation. (3) Aspirin and PEITC have protective effects in the early stages of tumor progression initiated by NNK.</p
- β¦