28 research outputs found

    Does normalization of voluntary EMG amplitude to MMAX account for the influence of electrode location and adiposity?

    Get PDF
    Voluntary surface electromyography (sEMG) amplitude is known to be influenced by both electrode position and subcutaneous adipose tissue thickness, and these factors likely compromise both between- and within-individual comparisons. Normalization of voluntary sEMG amplitude to evoked maximum M-wave parameters [MMAX peak-to-peak (P-P) and Area] may remove the influence of electrode position and subcutaneous tissue thickness. The purpose of this study was to: (i) assess the influence of electrode position on voluntary, evoked (MMAX P-P and Area) and normalized sEMG measurements across the surface of the vastus lateralis (VL; experiment 1: n=10); and (ii) investigate if MMAX normalization removes the confounding influence of subcutaneous tissue thickness [muscle-electrode distance (MED) from ultrasound imaging] on sEMG amplitude (experiment 2; n=41). Healthy young men performed maximum voluntary contractions (MVCs) and evoked twitch contractions during both experiments. Experiment 1: voluntary sEMG during MVCs was influenced by electrode location (P≀0.046, ES≄1.49 "large"), but when normalized to MMAX P-P showed no differences between VL sites (P=0.929) which was not the case when normalized to MMAX Area (P<0.004). Experiment 2: voluntary sEMG amplitude was related to MED, which explained 31-38% of the variance. Normalization of voluntary sEMG amplitude to MMAX P-P or MMAX Area reduced but did not consistently remove the influence of MED which still explained up to 16% (MMAX P-P) and 23% (MMAX Area) of the variance. In conclusion, MMAX P-P was the better normalization parameter for removing the influence of electrode location and substantially reduced but did not consistently remove the influence of subcutaneous adiposity

    Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training

    Get PDF
    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∌1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≀ ES ≀ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function

    The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man

    Get PDF
    What is the central question of this study? \ud Do tendon and/or muscle–tendon unit stiffness influence rate of torque development? What is the main finding and its importance? In our experimental conditions, some measures of relative (to maximal voluntary torque and tissue length) muscle–tendon unit stiffness had small correlations with voluntary/evoked rate of torque development over matching torque increments. However, absolute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque development. Therefore, the muscle aponeurosis but not free tendon influences the relative rate of torque development. Factors other than tissue stiffness more strongly determine the absolute rate of torque development. The influence of musculotendinous tissue stiffness on contractile rate of torque development (RTD) remains opaque. In this study, we examined the relationships between both patellar tendon (PT) and vastus lateralis muscle–tendon unit (MTU) stiffness and the voluntary and evoked knee-extension RTD. Fifty-two healthy untrained men completed duplicate laboratory sessions. Absolute and relative RTD were measured at 50 N m or 25% maximal voluntary torque (MVT) increments from onset and sequentially during explosive voluntary and evoked octet isometric contractions (supramaximal stimulation; eight pulses at 300 Hz). Isometric MVT was also assessed. Patellar tendon and MTU stiffness were derived from simultaneous force and ultrasound recordings of the PT and vastus lateralis aponeurosis during constant RTD ramp contractions. Absolute and relative (to MVT and resting tissue length) stiffness (k) was measured over identical torque increments as RTD. Pearson's correlations tested relationships between stiffness and RTD measurements over matching absolute/relative torque increments. Absolute and relative PT k were unrelated to equivalent voluntary/evoked (r = 0.020–0.255, P = 0.069–0.891). Absolute MTU k was unrelated to voluntary or evoked RTD (r ≀ 0.191, P ≄ 0.184), but some measures of relative MTU k were related to relative voluntary/evoked RTD (e.g. RTD for 25–50% MVT, r = 0.374/0.353, P = 0.007/0.014). In conclusion, relative MTU k explained a small proportion of the variance in relative voluntary and evoked RTD (both ≀19%), despite no association of absolute MTU k or absolute/relative PT k with equivalent RTD measures. Therefore, the muscle-aponeurosis component but not free tendon was associated with relative RTD, although it seems that an overriding influence of MVT negated any relationship of absolute MTU k and absolute RTD

    Neural adaptations after 4 years vs. 12 weeks of resistance training vs. untrained

    Get PDF
    The purpose of this study was to compare the effect of resistance training (RT) duration, including years of exposure, on agonist and antagonist neuromuscular activation throughout the knee extension voluntary torque range. Fifty‐seven healthy men (untrained [UNT] n=29, short‐term RT [12WK] n=14, and long‐term RT [4YR] n=14) performed maximum and sub‐maximum (20‐80% maximum voluntary torque [MVT]) unilateral isometric knee extension contractions with torque, agonist and antagonist surface EMG recorded. Agonist EMG, including at MVT, was corrected for the confounding effects of adiposity (i.e. muscle‐electrode distance; measured with ultrasonography). Quadriceps maximum anatomical cross‐sectional area (QACSAMAX; via MRI) was also assessed. MVT was distinct for all three groups (4YR +60/+39% vs. UNT/12WK; 12WK +15% vs. UNT; 0.001<P≀0.021), and QACSAMAX was greater for 4YR (+50/+42% vs. UNT/12WK; [both] P<0.001). Agonist EMG at MVT was +44/+33% greater for 4YR/12WK ([both] P<0.001) vs. UNT; but did not differ between RT groups. The torque‐agonist EMG relationship of 4YR displayed a right/down shift with lower agonist EMG at the highest common torque (196 Nm) compared to 12WK and UNT (0.005≀P≀0.013; Effect size [ES] 0.90≀ES≀1.28). The torque‐antagonist EMG relationship displayed a lower slope with increasing RT duration (4YR<12WK<UNT; 0.001<P≀0.094; 0.56≀ES≀1.31), and antagonist EMG at the highest common torque was also lower for 4YR than UNT (‐69%; P<0.001; ES=1.18). In conclusion, 4YR and 12WK had similar agonist activation at MVT and this adaptation may be maximised during early months of RT. In contrast, inter‐muscular coordination, specifically antagonist co‐activation was progressively lower, and likely continues to adapt, with prolonged RT

    Tendinous tissue properties after short and long-term functional overload: Differences between controls, 12 weeks and 4 years of resistance training.

    Get PDF
    AIM: The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy resistance training is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee-extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n=16), short-term (12 weeks; n=15) and no (untrained controls; n=39) functional overload in the form of heavy resistance training. METHODS: Patellar tendon cross-sectional area, vastus-lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. RESULTS: As expected long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P<0.001), as well as a greater aponeurosis area (+17% vs untrained, P<0.01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P<0.05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = 0.149). CONCLUSION: Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload, demonstrated similar increases in high force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations. This article is protected by copyright. All rights reserved

    The functional significance of hamstrings composition: is it really a ‘fast’ muscle group?

    Get PDF
    Hamstrings muscle fibre composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin-heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution (mean±SD (min-max); 47.1±9.1% (32.6-71.0%) MHC-I, 35.5±8.5% (21.5-60.0%) MHC-IIA, 17.4±9.1% (0.0-30.9%) MHC-IIX). Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r= 0.62–0.76, P< 0.01), but only associated with late phase explosive strength (time to 90 Nm; r= -0.53, P< 0.05). In contrast, BFlh muscle composition was not related to any maximal or explosive strength measure. BFlh MHC composition was not found to be ‘fast’, and therefore composition does not appear to explain the high incidence of hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength

    Tendinous tissue adaptation to explosive- vs. sustained-contraction strength training

    Get PDF
    © 2018 Massey, Balshaw, Maden-Wilkinson, Tillin and Folland. The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ~80% MVT (ECT). Changes in patellar tendon stiffness and Young's modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young's modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy

    The Human Muscle Size and Strength Relationship. Effects of Architecture, Muscle Force and Measurement Location.

    Get PDF
    Purpose This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force, and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. Methods Fifty-two recreationally active males completed unilateral isometric knee extension strength assessments and MRI scans of the dominant thigh and knee to determine quadriceps femoris (QF) size variables (ACSA along the length of the femur, maximum ACSA [ACSAMAX] and volume [VOL]) and patellar tendon moment arm. Ultrasound images (2 sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle), and when combined with VOL (from MRI), facilitated calculation of QF effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque (MVT) by the moment arm and addition of antagonist torque (derived from hamstring EMG). Results The associations of EFFPCSA (r=0.685), ACSAMAX (r=0.697), or VOL (r=0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than MVT. The association of strength-ACSA at 65% of femur length (r=0.719) was greater than for ACSA measured between 10-55% and 75-90% (r=-0.042-0.633) of femur length. Conclusions In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, that is independent of architecture measurements, and was most highly correlated to strength

    Muscle size and strength : debunking the “completely separate phenomena” suggestion

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-017-3616-
    corecore