8 research outputs found
Size reduction of complex networks preserving modularity
The ubiquity of modular structure in real-world complex networks is being the
focus of attention in many trials to understand the interplay between network
topology and functionality. The best approaches to the identification of
modular structure are based on the optimization of a quality function known as
modularity. However this optimization is a hard task provided that the
computational complexity of the problem is in the NP-hard class. Here we
propose an exact method for reducing the size of weighted (directed and
undirected) complex networks while maintaining invariant its modularity. This
size reduction allows the heuristic algorithms that optimize modularity for a
better exploration of the modularity landscape. We compare the modularity
obtained in several real complex-networks by using the Extremal Optimization
algorithm, before and after the size reduction, showing the improvement
obtained. We speculate that the proposed analytical size reduction could be
extended to an exact coarse graining of the network in the scope of real-space
renormalization.Comment: 14 pages, 2 figure