158 research outputs found
Quantum-Information Theoretic Properties of Nuclei and Trapped Bose Gases
Fermionic (atomic nuclei) and bosonic (correlated atoms in a trap) systems
are studied from an information-theoretic point of view. Shannon and Onicescu
information measures are calculated for the above systems comparing correlated
and uncorrelated cases as functions of the strength of short range
correlations. One-body and two-body density and momentum distributions are
employed. Thus the effect of short-range correlations on the information
content is evaluated. The magnitude of distinguishability of the correlated and
uncorrelated densities is also discussed employing suitable measures of
distance of states i.e. the well known Kullback-Leibler relative entropy and
the recently proposed Jensen-Shannon divergence entropy. It is seen that the
same information-theoretic properties hold for quantum many-body systems
obeying different statistics (fermions and bosons).Comment: 24 pages, 9 figures, 1 tabl
Information entropy and nucleon correlations in nuclei
The information entropies in coordinate and momentum spaces and their sum
(, , ) are evaluated for many nuclei using "experimental"
densities or/and momentum distributions. The results are compared with the
harmonic oscillator model and with the short-range correlated distributions. It
is found that depends strongly on and does not depend very much
on the model. The behaviour of is opposite. The various cases we consider
can be classified according to either the quantity of the experimental data we
use or by the values of , i.e., the increase of the quality of the density
and of the momentum distributions leads to an increase of the values of . In
all cases, apart from the linear relation , the linear relation
also holds. V is the mean volume of the nucleus. If is
considered as an ensemble entropy, a relation between or and the
ensemble volume can be found. Finally, comparing different electron scattering
experiments for the same nucleus, it is found that the larger the momentum
transfer ranges, the larger the information entropy is. It is concluded that
could be used to compare different experiments for the same nucleus and to
choose the most reliable one.Comment: 14 pages, 4 figures, 2 table
Effects of Short Range Correlations on Ca Isotopes
The effect of Short Range Correlations (SRC) on Ca isotopes is studied using
a simple phenomenological model. Theoretical expressions for the charge
(proton) form factors, densities and moments of Ca nuclei are derived. The role
of SRC in reproducing the empirical data for the charge density differences is
examined. Their influence on the depletion of the nuclear Fermi surface is
studied and the fractional occupation probabilities of the shell model orbits
of Ca nuclei are calculated. The variation of SRC as function of the mass
number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at
[email protected] Physical Review C in prin
Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei
Analytical expressions of the one- and two-body terms in the cluster
expansion of the charge form factors and densities of the s-p and s-d shell
nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b
and the parameter which originates from the Jastrow correlation
function. These expressions are used for the systematic study of the effect of
short range correlations on the form factors and densities and of the mass
dependence of the parameters b and . These parameters have been
determined by fit to the experimental charge form factors. The inclusion of the
correlations reproduces the experimental charge form factors at the high
momentum transfers (). It is found that while the parameter
is almost constant for the closed shell nuclei, He, O and
Ca, its values are larger (less correlated systems) for the open shell
nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
Bose-Einstein condensation of correlated atoms in a trap
The Bose-Einstein condensation of correlated atoms in a trap is studied by
examining the effect of inter-particle correlations to one-body properties of
atomic systems at zero temperature using a simplified formula for the
correlated two body density distribution. Analytical expressions for the
density distribution and rms radius of the atomic systems are derived using
four different expressions of Jastrow type correlation function. In one case,
in addition, the one-body density matrix, momentum distribution and kinetic
energy are calculated analytically, while the natural orbitals and natural
occupation numbers are also predicted in this case. Simple approximate
expressions for the mean square radius and kinetic energy are also given.Comment: 14 pages, 19 figures, 1 Table, RevTe
Calculations of He+p Elastic Cross Sections Using Microscopic Optical Potential
An approach to calculate microscopic optical potential (OP) with the real
part obtained by a folding procedure and with the imaginary part inherent in
the high-energy approximation (HEA) is applied to study the He+p elastic
scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and
proton density distributions obtained in different models for He are
utilized in the calculations of the differential cross sections. The role of
the spin-orbit potential is studied. Comparison of the calculations with the
available experimental data on the elastic scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The
problem of the ambiguities of the depths of each component of the optical
potential is considered by means of the imposed physical criterion related to
the known behavior of the volume integrals as functions of the incident energy.
It is shown also that the role of the surface absorption is rather important,
in particular for the lowest incident energies (e.g., 15.7 and 26.25
MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review
Jastrow-type calculations of one-nucleon removal reactions on open - shell nuclei
Single-particle overlap functions and spectroscopic factors are calculated on
the basis of Jastrow-type one-body density matrices of open-shell nuclei
constructed by using a factor cluster expansion. The calculations use the
relationship between the overlap functions corresponding to bound states of the
-particle system and the one-body density matrix for the ground state of
the -particle system. In this work we extend our previous analyses of
reactions on closed-shell nuclei by using the resulting overlap functions for
the description of the cross sections of reactions on the open -
shell nuclei Mg, Si and S and of S
reaction. The relative role of both shell structure and short-range
correlations incorporated in the correlation approach on the spectroscopic
factors and the reaction cross sections is pointed out.Comment: 11 pages, 5 figures, to be published in Phys. Rev.
Self-similar disk packings as model spatial scale-free networks
The network of contacts in space-filling disk packings, such as the
Apollonian packing, are examined. These networks provide an interesting example
of spatial scale-free networks, where the topology reflects the broad
distribution of disk areas. A wide variety of topological and spatial
properties of these systems are characterized. Their potential as models for
networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of
higher-dimensional packing
In-medium nucleon-nucleon potentials in configuration space
Based on the thermodynamic Green function approach two-nucleon correlations
in nuclear matter at finite temperatures are revisited. To this end, we derive
phase equivalent effective -space potentials that include the effect of the
Pauli blocking at a given temperature and density. These potentials enter into
a Schr\"odinger equation that is the -space representation of the
Galitskii-Feynman equation for two nucleons. We explore the analytical
structure of the equation in the complex -plane by means of Jost functions.
We find that despite the Mott effect the correlation with deuteron quantum
numbers are manifested as antibound states, i.e., as zeros of the Jost function
on the negative imaginary axis of the complex momentum space. The analysis
presented here is also suited for Coulombic systems.Comment: 6 pages, 1 table, 4 figure
Dominance relationships and coalitionary aggression against conspecifics in female carrion crows
Funding: European Research Council (ERCStG-336536 FuncSpecGen to J.W.), the Swedish Research Council VetenskapsrÄdet (621-2013-4510 to J.W.), Knut and Alice Wallenberg Foundation (to J.W.) and Tovetorp fieldstation through Stockholm University.Cooperation is a prevailing feature of many animal systems. Coalitionary aggression, where a group of individuals engages in coordinated behaviour to the detriment of conspecific targets, is a form of cooperation involving complex social interactions. To date, evidence has been dominated by studies in humans and other primates with a clear bias towards studies of male-male coalitions. We here characterize coalitionary aggression behaviour in a group of female carrion crows consisting of recruitment, coordinated chase, and attack. The individual of highest social rank liaised with the second most dominant individual to engage in coordinated chase and attack of a lower ranked crow on several occasions. Despite active intervention by the third most highly ranked individual opposing the offenders, the attack finally resulted in the death of the victim. All individuals were unrelated, of the same sex, and naive to the behaviour excluding kinship, reproduction, and social learning as possible drivers. Instead, the coalition may reflect a strategy of the dominant individual to secure long-term social benefits. Overall, the study provides evidence that members of the crow family engage in coordinated alliances directed against conspecifics as a possible means to manipulate their social environment.Publisher PDFPeer reviewe
- âŠ