29 research outputs found

    Antibiotics for the primary prevention of acute rheumatic fever: a meta-analysis

    Get PDF
    BACKGROUND: Rheumatic fever continues to put a significant burden on the health of low socio-economic populations in low and middle-income countries despite the near disappearance of the disease in the developed world over the past century. Antibiotics have long been thought of as an effective method for preventing the onset of acute rheumatic fever following a Group-A streptococcal (GAS) throat infection; however, their use has not been widely adopted in developing countries for the treatment of sore throats. We have used the tools of systematic review and meta-analysis to quantify the effectiveness of antibiotic treatment for sore throat, with symptoms suggestive of group A streptococcal (GAS) infection, for the primary prevention of acute rheumatic fever. METHODS: Trials were identified through a systematic search of titles and abstracts found in the Cochrane Central Register of Controlled Trials (Cochrane Library Issue 4, 2003), MEDLINE (1966–2003), EMBASE (1966–2003), and the reference lists of identified studies. The selection criteria included randomised or quasi-randomised controlled trials comparing the effectiveness of antibiotics versus no antibiotics for the prevention of rheumatic fever in patients presenting with a sore throat, with or without confirmation of GAS infection, and no history of rheumatic fever. RESULTS: Ten trials (n = 7665) were eligible for inclusion in this review. The methodological quality of the studies, in general, was poor. All of the included trials were conducted during the period of 1950 and 1961 and in 8 of the 10 trials the study population consisted of young adult males living on United States military bases. Fixed effects, meta-analysis revealed an overall protective effect for the use of antibiotics against acute rheumatic fever of 70% (RR = 0.32; 95% CI = 0.21–0.48). The absolute risk reduction was 1.67% with an NNT of 53. When meta-analysis was restricted to include only trials evaluating penicillin, a protective effect of 80% was found (Fixed effect RR = 0.20, 95% CI = 0.11–0.36) with an NNT of 60. The marginal cost of preventing one case of rheumatic fever by a single intramuscular injection of penicillin is approximately US$46 in South Africa. CONCLUSION: Antibiotics appear to be effective in reducing the incidence of acute rheumatic fever following an episode of suspected GAS pharyngitis. This effect may be achieved at relatively low cost if a single intramuscular penicillin injection is administered

    The role of beta-lactamase-producing-bacteria in mixed infections

    Get PDF
    Beta-lactamase-producing bacteria (BLPB) can play an important role in polymicrobial infections. They can have a direct pathogenic impact in causing the infection as well as an indirect effect through their ability to produce the enzyme beta-lactamase. BLPB may not only survive penicillin therapy but can also, as was demonstrated in in vitro and in vivo studies, protect other penicillin-susceptible bacteria from penicillin by releasing the free enzyme into their environment. This phenomenon occurs in upper respiratory tract, skin, soft tissue, surgical and other infections. The clinical, in vitro, and in vivo evidence supporting the role of these organisms in the increased failure rate of penicillin in eradication of these infections and the implication of that increased rate on the management of infections is discussed

    Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development

    Get PDF
    Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI).S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the Delta simA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development.Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement. The M-like protein mutant created in this research holds promise as live-attenuated vaccine
    corecore