300 research outputs found

    The SNAP-tag technology revised: an effective chemo-enzymatic approach by using a universal azide-based substrate

    Get PDF
    SNAP-tag ® is a powerful technology for the labelling of protein/enzymes by using benzyl-guanine (BG) derivatives as substrates. Although commercially available or ad hoc produced, their synthesis and purification are necessary, increasing time and costs. To address this limitation, here we suggest a revision of this methodology, by performing a chemo-enzymatic approach, by using a BG-substrate containing an azide group appropriately distanced by a spacer from the benzyl ring. The SNAP-tag ® and its relative thermostable version (SsOGT-H5 ) proved to be very active on this substrate. The stability of these tags upon enzymatic reaction makes possible the exposition to the solvent of the azide-moiety linked to the catalytic cysteine, compatible for the subsequent conjugation with DBCO-derivatives by azide-alkyne Huisgen cycloaddition. Our studies propose a strengthening and an improvement in terms of biotechnological applications for this self-labelling protein-tag

    Small molecule inhibitors of West Nile virus

    Get PDF
    West Nile virus is a human pathogen which is rapidly expanding worldwide. It is a member of the Flavivirus genus and it is transmitted by mosquitos between its avian hosts and occasionally in vertebrate hosts. In humans, the infection is often asymptomatic, but the most severe cases result in encephalitis or meningitis. Around 10% of cases of neuroinvasive disease are fatal. To date there is no effective human vaccine or effective antiviral therapy available to treat WNV infections For this reason, research in this field is rapidly growing. In this article we will review the latest efforts in the design and development of novel WNV inhibitors from a medicinal chemistry point of view, highlighting challenges and opportunities for the researchers working in this field

    Identification of a novel DGKa inhibitor for XLP-1 therapy by virtual screening

    Get PDF
    As part of an effort to identify druggable diacylglycerol kinase alpha (DGKa) inhibitors, we used an insilico approach based on chemical homology with the two commercially available DGKa inhibitors R59022 and R59949. Ritanserin and compound AMB639752 emerged from the screening of 127 compounds, showing an inhibitory activity superior to the two commercial inhibitors, being furthermore specific for the alpha isoform of diacylglycerol kinase. Interestingly, AMB639752 was also devoid of serotoninergic activity. The ability of both ritanserin and AMB639752, by inhibiting DGKa in intact cells, to restore restimulation induced cell death (RICD) in SAP deficient lymphocytes was also tested. Both compounds restored RICD at concentrations lower than the two previously available inhibitors, indicating their potential use for the treatment of X-linked lymphoproliferative disease 1 (XLP-1), a rare genetic disorder in which DGKa activity is deregulated

    Search for heavy neutral lepton production in K+ decays

    Get PDF
    A search for heavy neutral lepton production in K + decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the 10−7 to 10−6 level are established on the elements of the extended neutrino mixing matrix |Ue4| 2 and |Uμ4| 2 for heavy neutral lepton mass in the ranges 170–448 MeV/c2 and 250–373 MeV/c2, respectively. This improves on the previous limits from HNL production searches over the whole mass range considered for |Ue4|2 and above 300 MeV/c2 for |Uμ4|2

    Reliability assessment of ultrasound muscle echogenicity in patients with rheumatic diseases: Results of a multicenter international web-based study

    Get PDF
    ObjectivesTo investigate the inter/intra-reliability of ultrasound (US) muscle echogenicity in patients with rheumatic diseases.MethodsForty-two rheumatologists and 2 radiologists from 13 countries were asked to assess US muscle echogenicity of quadriceps muscle in 80 static images and 20 clips from 64 patients with different rheumatic diseases and 8 healthy subjects. Two visual scales were evaluated, a visual semi-quantitative scale (0–3) and a continuous quantitative measurement (“VAS echogenicity,” 0–100). The same assessment was repeated to calculate intra-observer reliability. US muscle echogenicity was also calculated by an independent research assistant using a software for the analysis of scientific images (ImageJ). Inter and intra reliabilities were assessed by means of prevalence-adjusted bias-adjusted Kappa (PABAK), intraclass correlation coefficient (ICC) and correlations through Kendall’s Tau and Pearson’s Rho coefficients.ResultsThe semi-quantitative scale showed a moderate inter-reliability [PABAK = 0.58 (0.57–0.59)] and a substantial intra-reliability [PABAK = 0.71 (0.68–0.73)]. The lowest inter and intra-reliability results were obtained for the intermediate grades (i.e., grade 1 and 2) of the semi-quantitative scale. “VAS echogenicity” showed a high reliability both in the inter-observer [ICC = 0.80 (0.75–0.85)] and intra-observer [ICC = 0.88 (0.88–0.89)] evaluations. A substantial association was found between the participants assessment of the semi-quantitative scale and “VAS echogenicity” [ICC = 0.52 (0.50–0.54)]. The correlation between these two visual scales and ImageJ analysis was high (tau = 0.76 and rho = 0.89, respectively).ConclusionThe results of this large, multicenter study highlighted the overall good inter and intra-reliability of the US assessment of muscle echogenicity in patients with different rheumatic diseases

    New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer

    Get PDF
    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway

    Measurement of the very rare K+π+ννˉK^+ \to \pi^+ \nu \bar\nu decay

    Get PDF
    The decay K+→π+νν¯ , with a very precisely predicted branching ratio of less than 10−10 , is among the best processes to reveal indirect effects of new physics. The NA62 experiment at CERN SPS is designed to study the K+→π+νν¯ decay and to measure its branching ratio using a decay-in-flight technique. NA62 took data in 2016, 2017 and 2018, reaching the sensitivity of the Standard Model for the K+→π+νν¯ decay by the analysis of the 2016 and 2017 data, and providing the most precise measurement of the branching ratio to date by the analysis of the 2018 data. This measurement is also used to set limits on BR(K+→π+X ), where X is a scalar or pseudo-scalar particle. The final result of the BR(K+→π+νν¯ ) measurement and its interpretation in terms of the K+→π+X decay from the analysis of the full 2016-2018 data set is presented, and future plans and prospects are reviewed

    An in-silico approach aimed to clarify the role of Y181C and K103N HIV-1 reverse transcriptase mutations versus Indole Aryl Sulphones

    No full text
    The emergence of HIV-1 drugs resistant stains remains of pivotal interest in relation to drugs development. Non nucleoside reverse transcriptase inhibitors proven to be very effective versus HIV-1 wild type but, with the only exception of diarylpyrimidines (e.g., etravirine, 1), were featured by high-level resistance versus mutated RT. The effects of two of the most clinically relevant RT mutations (Y181C; K103N) were studied by a computational approach. This involved molecular dynamics, principal components analysis (PCA) and residue interactions networks (RINs). The methodology was applied to 1 and to Indolyl Aryl Sulphones (IASs 2 and 3), a class of potent RT inhibitors active also versus mutated RT forms. The molecular insight from this study was in accordance with the proposed mechanism of resistance for studied mutations and it might be useful in the design of novel RT inhibitors with high ligand efficacy on resistant strains

    A Robust Model and Numerical Approach for Solving Solid Oxide Fuel Cell

    No full text
    Purpose – The purpose of this paper is to introduce a robust mathematical model and finite element-based numerical approach to solve solid oxide fuel cell (SOFC) problems. Design/methodology/approach – A robust mathematical model is constructed by studying pros and cons of different SOFC and other fuel cell models. The finite element-based numerical approach presented is a unified approach to solve multi-disciplinary aspects arising from SOFC problems. The characteristic-based split approach employed here is an efficient way of solving various flow, heat and mass transfer regimes in SOFCs. Findings – The results presented show that both the model and numerical algorithm proposed are robust. Furthermore, the approaches proposed are general and can be easily extended to other similar problems of practical interest. Originality/value – The model proposed is the first of this kind and the unified approach for solving flow, heat and mass transfer within a fuel cell is also novel
    corecore