4 research outputs found

    Investigation of thermal characteristics of CNF-based nanofluids for electronic cooling applications

    Get PDF
    A major problem being faced by existing coolants is the limited amount of heat that can be absorbed by the fluids. An innovative way to overcome this limitation is by utilizing a nano-coolant as a heat transfer medium in a cooling application. This paper was aimed at formulating an efficient nanofluid from Pyrograf III HHT24 carbon nanofibers (CNF) in a base fluid consisting of deionized water (DI) and ethylene glycol (EG) with polyvinylpyrrolidone (PVP) as the dispersant. The experiment was conducted by setting the variable weight percentage of CNF from 0.1 wt% to 1.0 wt%, with the base fluid ratio of 90:10 (DI:EG) weight percent. Then, the thermal properties of the formulated nanofluids were investigated. The test on the thermal conductivity of the nanofluids showed that the highest thermal conductivity of 0.642 W/m.K in this experiment was produced when the concentration of nanofluid is 0.5 wt% at a temperature of 40°C. Experimental investigations into the forced convective heat transfer performance of the CNF-based nanofluid in a laminar flow through a mini heat transfer test rig showed that the presence of nanoparticles enhanced the heat transfer coefficient as opposed to the original base fluid. The highest heat transfer coefficient was reported using nanofluid with a concentration of 0.6 wt% at 40°C. The enhancement of the heat transfer coefficient was due to the higher thermal conductivity value. The Nusselt number was also calculated and presented in this paper. This study showed that the CNF-based nanofluids have a huge potential to replace existing coolants in electronic cooling applications. Thus, in order to commercialize nanofluids in practice, more fundamental studies are needed to understand the crucial parameters that affect their thermal characteristics

    Determination of Optimal Electrospinning Distance and Applied Voltage for Polyacrylonitrile Electrospun Fibre Production

    Get PDF
    Electrospinning process is highly dictated by electric field strength. Thus, two key parameters i.e., electrospinning distance and applied voltage, determine the quality of electrospun fibres. Incorrect selection of these parameters will result in poor fibre qualities. There ought to be an optimal combination of electrospinning distance and applied voltage to produce best quality fibres from a given material. In this study, the optimal combination of electrospinning distance and applied voltage was assessed based on consistency of electrospinning process, amount of fibre, fibre morphology, and average fibre diameter. Polyacrylonitrile (PAN) electrospun fibre samples were prepared at different combinations of electrospinning distance and applied voltage. Scanning electron microscopy and image analysis were conducted to assess the quality and average diameter of the fibres. The results indicate that for electrospinning of PAN, the distance should be between 10 and 20 cm with a 15 to 20 kV of applied voltages. Findings from this study is crucial for producing optimal fibre quality in PAN electrospun nanofibre synthesis

    Determination of optimal electrospinning distance and applied voltage for polyacrylonitrile electrospun fibre production

    No full text
    Electrospinning process is highly dictated by electric field strength. Thus, two key parameters i.e., electrospinning distance and applied voltage, determine the quality of electrospun fibres. Incorrect selection of these parameters will result in poor fibre qualities. There ought to be an optimal combination of electrospinning distance and applied voltage to produce best quality fibres from a given material. In this study, the optimal combination of electrospinning distance and applied voltage was assessed based on consistency of electrospinning process, amount of fibre, fibre morphology, and average fibre diameter. Polyacrylonitrile (PAN) electrospun fibre samples were prepared at different combinations of electrospinning distance and applied voltage. Scanning electron microscopy and image analysis were conducted to assess the quality and average diameter of the fibres. The results indicate that for electrospinning of PAN, the distance should be between 10 and 20 cm with a 15 to 20 kV of applied voltages. Findings from this study is crucial for producing optimal fibre quality in PAN electrospun nanofibre synthesis
    corecore