2,056 research outputs found

    Fine structure of beta decay endpoint spectrum

    Full text link
    We note that the fine structure at the endpoint region of the beta decay spectrum is now essentially known using neutrino oscillation data, if the mass of one neutrino is specified. This may help to identify the effects of nonzero neutrino masses in future experiments. An exact treatment of phase space kinematics is used. This work is independent of theoretical models. Additional restrictions due to the assumption of a so-called "complementary ansatz" for the neutrino mass matrix are also discussed.Comment: 9 pages, 8 figure

    Wilson\u27s disease: a review

    Get PDF

    An inversion procedure for the recovery of propagation speed and damping of the medium

    Get PDF
    We consider the one-dimensional inverse problem of determining variations in propagation speed taking into account damping of the medium. We also consider the inverse problemof recovering variations in damping fromobserv ations of signals which pass through the medium of interest. Our method is based on the linearized inversion associated with Born’s approximation. Thus we assume wave speed and damping are well approximated by the background plus the perturbation. We exploit the high-frequency character of seismic data. Therefore, we use WKBJ Green’s function in deriving our inversion representation

    Two Loop Low Temperature Corrections to Electron Self Energy

    Full text link
    We recalculate the two loop corrections in the background heat bath using real time formalism. The procedure of the integrations of loop momenta with dependence on finite temperature before the momenta without it, has been followed. We determine the mass and wavefunction renormalization constants in the low temperature limit of QED, for the first time with this preferred order of integrations. The correction to electron mass and spinors in this limit is important in the early universe at the time of primordial nucleosynthesis as well as in astrophysics.Comment: 8 pages and 1 figure to appear in Chinese Physics

    Rituximab induced pulmonary edema managed with extracorporeal life support

    Get PDF
    Though rare, rituximab has been reported to induce severe pulmonary edema. We describe the first report of ECLS utilization for this indication. A 31-year-old female with severe thrombotic thrombocytopenic purpura developed florid pulmonary edema after rituximab infusion. Despite advanced ventilatory settings, she developed severe respiratory acidosis and remained hypoxemic with a significant vasopressor requirement. Since her pulmonary insult was likely transient, ECLS was considered. Due to combined cardiorespiratory failure, she received support with peripheral venoarterial ECLS. During her ECLS course, she received daily plasmapheresis and high dose steroids. Her pulmonary function recovered and she was decannulated after 8 days. She was discharged after 23 days without residual sequelae

    Exact relativistic beta decay endpoint spectrum

    Get PDF
    The exact relativistic form for the beta decay endpoint spectrum is derived and presented in a simple factorized form. We show that our exact formula can be well approximated to yield the endpoint form used in the fit method of the KATRIN collaboration. We also discuss the three neutrino case and how information from neutrino oscillation experiments may be useful in analyzing future beta decay endpoint experiments.Comment: 12 pages, 3 figure

    Reconstruction of 3D deformation from 2D MR velocity mapping with incompressibility constraints

    No full text
    This paper presents a new method for calculating 3D myocardial deformation from multislice 2D magnetic resonance velocity mapping. The method first involves the rectification of in-plane velocity distribution with a variational vector restoration method. This restored 2D velocity is then used to estimate the through-plane velocity component by applying a local incompressibility constraint. A global optimization procedure was then used to derive the velocity distribution that conforms to the incompressibility constraint. The proposed method was validated by using a simulation phantom with different levels of noise. The derived velocity field permits a full 3D deformation analysis of the myocardium
    corecore