125 research outputs found

    Adaptive-Attentive Geolocalization From Few Queries: A Hybrid Approach

    Get PDF
    We tackle the task of cross-domain visual geo-localization, where the goal is to geo-localize a given query image against a database of geo-tagged images, in the case where the query and the database belong to different visual domains. In particular, at training time, we consider having access to only few unlabeled queries from the target domain. To adapt our deep neural network to the database distribution, we rely on a 2-fold domain adaptation technique, based on a hybrid generative-discriminative approach. To further enhance the architecture, and to ensure robustness across domains, we employ a novel attention layer that can easily be plugged into existing architectures. Through a large number of experiments, we show that this adaptive-attentive approach makes the model robust to large domain shifts, such as unseen cities or weather conditions. Finally, we propose a new large-scale dataset for cross-domain visual geo-localization, called SVOX

    Metastatic tumors to the stomach: clinical and endoscopic features.

    Get PDF
    AIM: To evaluate the clinical and endoscopic patterns in a large series of patients with metastatic tumors in the stomach. METHODS: A total of 64 patients with gastric metastases from solid malignant tumors were retrospectively examined between 1990 and 2005. The clinicopathological findings were reviewed along with tumor characteristics such as endoscopic pattern, location, size and origin of the primary sites. RESULTS: Common indications for endoscopy were anemia, bleeding and epigastric pain. Metastases presented as solitary (62.5%) or multiple (37.5%) tumors were mainly located in the middle or upper third of stomach. The main primary metastatic tumors were from breast and lung cancer and malignant melanoma. CONCLUSION: As the prognosis of cancer patients has been improving gradually, gastrointestinal (GI) metastases will be encountered more often. Endoscopic examinations should be conducted carefully in patients with malignancies, and endoscopic biopsies and information on the patient's clinical history are useful for correct diagnosis of gastric metastases

    Muon Radiography Investigations in Boreholes with a Newly Designed Cylindrical Detector

    Get PDF
    Muons are constantly produced in cosmic-rays and reach the Earth surface with a flux of about 160 particles per second per square meter. The abundance of muons with respect to other cosmic particles and their capability to cross dense materials with low absorption rate allow them to be exploited for large scale geological or human-made object imaging. Muon radiography is based on similar principles as X-ray radiography, measuring the surviving rate of muons escaping the target and relating it to the mass distribution inside the object. In the course of decades, after the first application in 1955, the methodology has been applied in several different fields. Muography allows us to measure the internal density distribution of the investigated object, or to simply highlight the presence of void regions by observing any excess of muons. Most of these applications require the detector to be installed below the rock being probed. In case that possible installation sites are not easily accessible by people, common instrumentation cannot be installed. A novel borehole cylindrical detector for muon radiography has been recently developed to deal with these conditions. It has been realized with a cylindrical geometry to fit typical borehole dimensions. Its design maximizes the geometrical acceptance, minimizing the dead spaces by the use of arc-shaped scintillators. The details of the construction and preliminary results of the first usage are described in this paper. © 2022 by the authors

    A new cylindrical borehole detector for radiographic imaging with muons

    Get PDF
    Muon radiography is a methodology which enables measuring the mass distribution within large objects. It exploits the abundant flux of cosmic muons and uses detectors with different technologies depending on the application. As the sensitive surface and geometric acceptance are two fundamental parameters for increasing the collection of muons, the optimization of the detectors is very significant. Here we show a potentially innovative detector of size and shape suitable to be inserted inside a borehole, that optimizes the sensitive area and maximizes the angular acceptance thanks to its cylindrical geometry obtained using plastic arc-shaped scintillators. Good spatial resolution is obtained with a reasonable number of channels. The dimensions of the detector make it ideal for use in 25 cm diameter wells. Detailed simulations based on Monte Carlo methods show great cavity detection capability. The detector has been tested in the laboratory, achieving overall excellent performance

    Modeling and control of UAV bearing formations with bilateral high-level steering

    Get PDF
    In this paper we address the problem of controlling the motion of a group of unmanned aerial vehicles (UAVs) bound to keep a formation defined in terms of only relative angles (i.e. a bearing formation). This problem can naturally arise within the context of several multi-robot applications such as, e.g. exploration, coverage, and surveillance. First, we introduce and thoroughly analyze the concept and properties of bearing formations, and provide a class of minimally linear sets of bearings sufficient to uniquely define such formations. We then propose a bearing-only formation controller requiring only bearing measurements, converging almost globally, and maintaining bounded inter-agent distances despite the lack of direct metric information.The controller still leaves the possibility of imposing group motions tangent to the current bearing formation. These can be either autonomously chosen by the robots because of any additional task (e.g. exploration), or exploited by an assisting human co-operator. For this latter 'human-in-the-loop' case, we propose a multi-master/multi-slave bilateral shared control system providing the co-operator with some suitable force cues informative of the UAV performance. The proposed theoretical framework is extensively validated by means of simulations and experiments with quadrotor UAVs equipped with onboard cameras. Practical limitations, e.g. limited field-of-view, are also considered. © The Author(s) 2012

    Morbid obesity and thyroid cancer rate. A review of literature

    Get PDF
    In the past three decades, several recent studies have analyzed the alarming increase of obesity worldwide, and it has been well established that the risk of many types of malignancies is increased in obese individuals; in the same period, thyroid cancer has become the fastest growing cancer of all malignancies. We investigated the current literature to underline the presence of a connection between excess body weight or Body Mass Index (BMI) and risk of thyroid cancer. Previous studies stated that the contraposition between adipocytes and adipose-resident immune cells enhances immune cell production of multiple pro-inflammatory factors with subsequent induction of hyperlipidemia and vascular injury; these factors are all associated with oxidative stress and cancer development and/or progression. Moreover, recent studies made clear the mitogenic and tumorigenic action of insulin, carried out through the stimulation of mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase/AKT (PI3K/AKT) pathways, which is correlated to the hyperinsulinemia and hyperglycemia found in obese population. Our findings suggest that obesity and excess body weight are related to an increased risk of thyroid cancer and that the mechanisms that combine overweight with this cancer should be searched for in the adipokine pathways and chronic inflammation onset

    Stand-alone Low Power Consumption FEE and DAQ for the Readout of Silicon Photomultipliers

    Get PDF
    We developed a front end electronics (FEE) and data acquisition (DAQ) system with a low power consumption, especially intended for stand-alone applications in unattended environments without standard electricity supply. The system works autonomously thanks to dedicated algorithms that are embedded. The FEE is based on the EASIROC chip, designed for the readout of Silicon photomultipliers (SiPMs). It digitizes the amplitude of the signals and provides time information with time of flight capability. The trigger logic is programmable and physical and accidental coincidences rates can be measured. The SiPMs temperature is controlled by thermoelectric cells. Thanks to a network of temperature and humidity sensors, a real-time software sets the optimal operating point of the SiPMs depending on external conditions and if necessary halts the system to avoid damage to the electronics. The system has been used in several muon radiography experiments

    Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape

    Get PDF
    Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alter-ations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma‐associated fibroblasts (MAFs) that are highly abun-dant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal mi-croenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we dis-cuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progres-sion, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes

    Electronics design of the RPC system for the OPERA muon spectrometer

    Get PDF
    The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards(TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB’s FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes)

    The MURAVES muon telescope: a low power consumption muon tracker for muon radiography applications

    Get PDF
    Muon Radiography or muography is based on the measurement of the absorption or scattering of cosmic muons, as they pass through the interior of large scale bodies, In particular, absorption muography has been applied to investigate the presence of hidden cavities inside the pyramids or underground, as well as the interior of volcanoes' edifices. The MURAVES project has the challenging aim of investigating the density distribution inside the summit of Mt. Vesuvius. The information, together with that coming from gravimetric measurements, is useful as input to models, to predict how an eruption may develop. The MURAVES apparatus is a robust and low power consumption muon telescope consisting of an array of three identical and independent muon trackers, which provide in a modular way a total sensitive area of three square meters. Each tracker consists of four doublets of planes of plastic scintillator bars with orthogonal orientation, optically coupled to Silicon photomultipliers for the readout of the signal. The muon telescope has been installed on the slope of the volcano and has collected a first set of data, which are being analyzed
    corecore