22,523 research outputs found
NASTRAN solutions of problems described by simultaneous parabolic differential equations
NASTRAN solution techniques are shown for a numerical analysis of a class of coupled vector flow processes described by simultaneous parabolic differential equations. To define one physical problem type where equations of this form arise, the differential equations describing the coupled transfers of heat and mass in mechanical equilibrium with negligible mass average velocity are presented and discussed. Also shown are the equations describing seepage when both electrokinetic and hydrodynamic forces occur. Based on a variational statement of the general problem type, the concepts of scalar transfer elements and parallel element systems are introduced. It is shown that adoptation of these concepts allows the direct use of NASTRAN's existing Laplace type elements for uncoupled flow (the heat transfer elements) for treating multicomponent coupled transfer. Sample problems are included which demonstrate the application of these techniques for both steady-state and transient problems
The COREL and W12SC3 computer programs for supersonic wing design and analysis
Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case
Investigation of an aircraft trailing vortex using a tuft grid
With the increasing capacity of airport terminal areas, and the use of the new large jet transports, it has become important to understand the turbulent wake created by these aircraft. A study of the trailing vortex of a wing has been made using a tuft grid in a 6 foot wind tunnel. The study included an investigation of the use of mass injection at the wing tip as a means of destroying the vortex. Test results show that a fully developed, stable, vortex exists at least a distance of thirty chord lengths downstream of the wing, and that the swirl of the vortex can be reduced or eliminated by mass injection at the wing tip
Test and Analysis Correlation for Sandwich Composite Longitudinal Joint Specimens
The NASA Composite Technology for Exploration (CTE) project is tasked with evaluating methods to analyze and manufacture composite joints for potential use in block upgrades to the Space Launch System (SLS) launch-vehicle structures such as the Payload Attach Fitting (PAF). To perform this task, the CTE project has initiated test and analysis correlation studies for composite joints under various loading conditions. Herein, NASA-developed numerical models are correlated with the experimental results from a series of tension tests. Pretest strain results matched the far-field test data well, but did not capture the nonlinear response in the vicinity of the joint. A refined pretest analytical model was modified to represent progressive failure of the specimens at failure locations observed during the experimental tests. The nonlinear strain response from this progressive failure model predicted the delamination failure load within 15% of the test data, but underpredicted the nonlinearity of the strain response. Further study of composite material models that account for the nonlinear shear response of fabric composites is recommended for the composite joint structures considered in this paper
Body and canard effects on an attached-flow maneuver wing at Mach 1.62
A wing-body-canard configuration was tested at a Mach number of 1.62 by using both a cambered and an uncambered wing. The cambered wing was designed to produce efficient high lift by using attached supercritical crossflow and was originally tested as an isolated wing. The uncambered wing has the same planform and essentially the same thickness distribution as the cambered wing. The experiment determined the effects of a body and canards on both wings. The experimental data showed that both the body and the canards influenced the wing pressure levels, but that the attached supercritical crossflow, which was achieved in the isolated cambered-wing test, was maintained in the presence of a body and canards. Tables of experimental pressure, force, and moment data are included, as well as photographs of oil flow patterns on the upper surface
Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation
Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg
A wing concept for supersonic maneuvering
A theoretical and experimental program in which a wing concept for supersonic maneuvering was developed and then demonstrated experimentally in a series of wind tunnel tests is described. For the typical fighter wing, the problem of obtaining efficient lift at supersonic maneuvering C sub 's occurs due to development of a strong crossflow shock, and boundary layer separation. A natural means of achieving efficient supersonic maneuvering is based on controlling the non-linear inviscid crossflow on the wing in a manner analogous to the supercritical aerodynamic methods developed for transonic speeds. The application of supercritical aerodynamics to supersonic speeds is carried out using Supercritical Conical Camber (SC3). This report provides an aerodynamic analysis of the effort, with emphasis on wing design using non-linear aerodynamics. The substantial experimental data base is described in three separate wind tunnel reports, while two of the computer programs used in the work are also described in a separate report. Based on the development program it appears that a controlled supercritical crossflow can be obtained reliably on fighter-type wing planforms, with an associated drag due to lift reduction of about 20% projected using this concept
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 3A: Supporting data
For abstract, see N75-15681
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 1: Summary report
A 1/8-scale structural dynamics model of the space shuttle orbiter was analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of the calculated eigenvalues with preliminary test data for the unrestrained condition indicate that the analytical model was consistently stiffer, being about 20% higher in the first mode. The eigenvectors show reasonably good agreement with test data. A series of analytical and experimental investigations undertaken to resolve the discrepancy are described. Modifications in the NASTRAN model based upon these investigations resulted in close agreement for both eigenvalues and eigenvectors
Testing and Analysis Correlation of Composite Sandwich Longitudinal Bonded Joints for Space Launch Vehicle Structures
The NASA Composite Technology for Exploration (CTE) Project has been developing and demonstrating critical composite technologies with a focus on joints; incorporating materials, design/analysis, manufacturing, and tests that utilize NASA expertise and capabilities. The CTE project has focused on the development of composite longitudinal bonded joint technologies for conical structures such as the SLS Payload Attach Fitting (PAF) due to challenging joint geometries and loads compared to cylindrical jointed structures. The CTE team selected and designed a double-lap composite bonded joint as the most advantageous longitudinal joint to advance for the CTE project. This paper reports on the longitudinal bonded joint sub-element test articles that were fabricated and tested for several loading conditions to test the capability of the bonded joint design. Test and analysis correlation to the sub-element test articles are presented in the paper
- …