2,104 research outputs found
On the superfluidity of classical liquid in nanotubes
In 2001, the author proposed the ultra second quantization method. The ultra
second quantization of the Schr\"odinger equation, as well as its ordinary
second quantization, is a representation of the N-particle Schr\"odinger
equation, and this means that basically the ultra second quantization of the
equation is the same as the original N-particle equation: they coincide in
3N-dimensional space.
We consider a short action pairwise potential V(x_i -x_j). This means that as
the number of particles tends to infinity, , interaction is
possible for only a finite number of particles. Therefore, the potential
depends on N in the following way: . If V(y) is finite
with support , then as the support engulfs a finite
number of particles, and this number does not depend on N.
As a result, it turns out that the superfluidity occurs for velocities less
than , where
is the critical Landau velocity and R is the radius of
the nanotube.Comment: Latex, 20p. The text is presented for the International Workshop
"Idempotent and tropical mathematics and problems of mathematical physics",
Independent University of Moscow, Moscow, August 25--30, 2007 and to be
published in the Russian Journal of Mathematical Physics, 2007, vol. 15, #
Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts
We show that G\"odel's negative results concerning arithmetic, which date
back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites
paradox") pose the questions of the use of fuzzy sets and of the effect of a
measuring device on the experiment. The consideration of these facts led, in
thermodynamics, to a new one-parameter family of ideal gases. In turn, this
leads to a new approach to probability theory (including the new notion of
independent events). As applied to economics, this gives the correction, based
on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us
to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are
added. arXiv admin note: significant text overlap with arXiv:1111.610
Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses
In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys.
A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical
approximation the general theory of calculation of effective currents and
sources generating bremsstrahlung of an arbitrary number of soft quarks and
soft gluons at collision of a high-energy color-charged particle with thermal
partons in a hot quark-gluon plasma, is developed. For the case of one- and
two-scattering thermal partons with radiation of one or two soft excitations,
the effective currents and sources are calculated in an explicit form. In the
model case of `frozen' medium, approximate expressions for energy losses
induced by the most simple processes of bremsstrahlung of soft quark and soft
gluon, are derived. On the basis of a conception of the mutual cancellation of
singularities in the sum of so-called `diagonal' and `off-diagonal'
contributions to the energy losses, an effective method of determining color
factors in scattering probabilities, containing the initial values of Grassmann
color charges, is suggested. The dynamical equations for Grassmann color
charges of hard particle used by us early are proved to be insufficient for
investigation of the higher radiative processes. It is shown that for correct
description of these processes the given equations should be supplemented
successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure
Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics
In the paper, the principal aspects of the mathematical theory of equilibrium
thermodynamics are distinguished. It is proved that the points of degeneration
of a Bose gas of fractal dimension in the momentum space coincide with critical
points or real gases, whereas the jumps of critical indices and the Maxwell
rule are related to the tunnel generalization of thermodynamics. Semiclassical
methods are considered for the tunnel generalization of thermodynamics and also
for the second and ultrasecond quantization (operators of creation and
annihilation of pairs). To every pure gas there corresponds a new critical
point of the limit negative pressure below which the liquid passes to a
dispersed state (a foam). Relations for critical points of a homogeneous
mixture of pure gases are given in dependence on the concentration of gases.Comment: 37 pages, 9 figure, more precise explanations, more references. arXiv
admin note: substantial text overlap with arXiv:1202.525
Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity
Introduction. Simultaneous operation of numerous sources of radio emission form complex signal environment. Different devices with the common name “wideband analyzers” (WBA) are widely used to analyze and to control such environment. There is currently a need for developing the quantitative characteristics of a complex signal environment, which will make it possible to predict the stability of the WBA operation.Aim. The development of the indicator of the signal environment complexity, which will make possible the quantitative assessment of such environment.Materials and methods. To provide the desired indicator, simulation and mathematical tools for random events description are used. All calculations are performed using MatLab.Results. The principles of disturbances in the WBA receiver and algorithmic errors in the processing of overlapped signals are described. To quantify the “complexity” of the signal environment it is proposed to use the probability that pulses from several sources overlap in time. This allows one to compare signal environments with each other. The new analytical expression for estimating the pulse overlap probability is proposed. Functions of the pulse overlap probability from the complex signal environment parameters were obtained.Conclusion. According to the comparative analysis of the calculations using proposed analytical expression and simulation, the new expression allows one to achieve the calculation speed up to 6 orders of magnitude higher with an error below 7% compared to the simulation. The high performance of the calculations using the proposed expression allows one to simulate the complex signal environment in dynamics more efficiently.Introduction. Simultaneous operation of numerous sources of radio emission form complex signal environment. Different devices with the common name “wideband analyzers” (WBA) are widely used to analyze and to control such environment. There is currently a need for developing the quantitative characteristics of a complex signal environment, which will make it possible to predict the stability of the WBA operation.Aim. The development of the indicator of the signal environment complexity, which will make possible the quantitative assessment of such environment.Materials and methods. To provide the desired indicator, simulation and mathematical tools for random events description are used. All calculations are performed using MatLab.Results. The principles of disturbances in the WBA receiver and algorithmic errors in the processing of overlapped signals are described. To quantify the “complexity” of the signal environment it is proposed to use the probability that pulses from several sources overlap in time. This allows one to compare signal environments with each other. The new analytical expression for estimating the pulse overlap probability is proposed. Functions of the pulse overlap probability from the complex signal environment parameters were obtained.Conclusion. According to the comparative analysis of the calculations using proposed analytical expression and simulation, the new expression allows one to achieve the calculation speed up to 6 orders of magnitude higher with an error below 7% compared to the simulation. The high performance of the calculations using the proposed expression allows one to simulate the complex signal environment in dynamics more efficiently
Conductance of a Mott Quantum Wire
We consider transport through a one-dimensional conductor subject to an
external periodic potential and connected to non-interacting leads (a "Mott
quantum wire"). For the case of a strong periodic potential, the conductance is
shown to jump from zero, for the chemical potential lying within the
Mott-Hubbard gap, to the non-interacting value of 2e^2/h, as soon as the
chemical potential crosses the gap edge. This behavior is strikingly different
from that of an optical conductivity, which varies continuously with the
carrier concentration. For the case of a weak potential, the perturbative
correction to the conductance due to Umklapp scattering is absent away from
half-filling.Comment: 4 pages, RevTex, 1 ps figure included; published versio
Initial Conditions for Semiclassical Field Theory
Semiclassical approximation based on extracting a c-number classical
component from quantum field is widely used in the quantum field theory.
Semiclassical states are considered then as Gaussian wave packets in the
functional Schrodinger representation and as Gaussian vectors in the Fock
representation. We consider the problem of divergences and renormalization in
the semiclassical field theory in the Hamiltonian formulation. Although
divergences in quantum field theory are usually associated with loop Feynman
graphs, divergences in the Hamiltonian approach may arise even at the tree
level. For example, formally calculated probability of pair creation in the
leading order of the semiclassical expansion may be divergent. This observation
was interpretted as an argumentation for considering non-unitary evolution
transformations, as well as non-equivalent representations of canonical
commutation relations at different time moments. However, we show that this
difficulty can be overcomed without the assumption about non-unitary evolution.
We consider first the Schrodinger equation for the regularized field theory
with ultraviolet and infrared cutoffs. We study the problem of making a limit
to the local theory. To consider such a limit, one should impose not only the
requirement on the counterterms entering to the quantum Hamiltonian but also
the requirement on the initial state in the theory with cutoffs. We find such a
requirement in the leading order of the semiclassical expansion and show that
it is invariant under time evolution. This requirement is also presented as a
condition on the quadratic form entering to the Gaussian state.Comment: 20 pages, Plain TeX, one postscript figur
Berry phase in graphene: a semiclassical perspective
We derive a semiclassical expression for the Green's function in graphene, in
which the presence of a semiclassical phase is made apparent. The relationship
between this semiclassical phase and the adiabatic Berry phase, usually
referred to in this context, is discussed. These phases coincide for the
perfectly linear Dirac dispersion relation. They differ however when a gap is
opened at the Dirac point. We furthermore present several applications of our
semiclassical formalism. In particular we provide, for various configurations,
a semiclassical derivation of the electron's Landau levels, illustrating the
role of the semiclassical ``Berry-like'' phas
- …