35 research outputs found

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    Early Release of HMGB-1 from Neurons after the Onset of Brain Ischemia

    No full text

    Serum deprivation and re-addition: Effects on cyclooxygenase inhibitor sensitivity in cultured glia

    No full text
    A number of drugs were assessed for their ability to inhibit stimulus-evoked prostanoid synthesis in cultured glia. These drugs included non-selective cyclooxygenase (COX) inhibitors and those considered to be selective for the inducible isoform of this enzyme (COX-2). Experiments were carried out on normal cultures and those which had been maintained in serum-free growth medium for four days then re-exposed to serum for a further seven days. All of the drugs tested elicited concentration-dependent inhibitions of arachidonic acid (AA)-stimulated thromboxane B2 (TXB2) accumulation in normal cultures with the following rank order of potency: indomethacin > piroxicam > nimesulide = NS398 > ibuprofen ≫ aspirin > paracetamol. In cultures which had been deprived of serum for four days, basal and AA-stimulated TXB2 production was considerably reduced, as was the amount of COX immunoreactivity determined by Western blotting. Basal and AA-stimulated TXB2 production together with COX immunoreactivity were restored to control levels by the re-addition of serum to serum-deprived cultures for 7 days. In these cultures, the rank order of potency was: indomethacin > piroxicam ≫ ibuprofen > nimesulide = NS398 ≫ aspirin > paracetamol; however, there were marked charges in the apparent IC50 values for particular drugs. Indomethacin, piroxicam and aspirin were very similar to control, but the potencies of ibuprofen (3-fold), NS398 (30-fold) and nimesulide (40-fold) were found to be decreased when compared to control. Paracetamol, on the other hand, was found to be almost 3-fold more potent under these conditions. Glia appear to express a COX with a novel sensitivity to particular inhibitors following serum deprivation and re-addition
    corecore