4 research outputs found

    Anomalous Purcell decay of strongly driven inhomogeneous emitters coupled to a cavity

    Full text link
    We perform resonant fluorescence lifetime measurements on a nanocavity-coupled erbium ensemble as a function of cavity-laser detuning and pump power. Our measurements reveal an anomalous suppression of the ensemble decay lifetime at zero cavity detuning and high pump fluence. We capture qualitative aspects of this decay rate suppression using a Tavis-Cummings model of non-interacting spins coupled to a common cavity.Comment: 4 figure

    Nanocavity-mediated Purcell enhancement of Er in TiO2_2 thin films grown via atomic layer deposition

    Full text link
    The use of trivalent erbium (Er3+^{3+}), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunications devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface makes it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO2_2) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping control over the Er concentration. Even though the as-grown films are amorphous, after oxygen annealing they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO2_2. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (300) of their optical lifetime. Our findings demonstrate a low-temperature, non-destructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.Comment: 5 figure

    Optical and microstructural characterization of Er3+^{3+} doped epitaxial cerium oxide on silicon

    Full text link
    Rare-earth ion dopants in solid-state hosts are ideal candidates for quantum communication technologies such as quantum memory, due to the intrinsic spin-photon interface of the rare-earth ion combined with the integration methods available in the solid-state. Erbium-doped cerium oxide (Er:CeO2_2) is a particularly promising platform for such a quantum memory, as it combines the telecom-wavelength (~1.5 μ\mum) 4f-4f transition of erbium, a predicted long electron spin coherence time supported by CeO2_2, and is also near lattice-matched to silicon for heteroepitaxial growth. In this work, we report on the epitaxial growth of Er:CeO2_2 thin films on silicon using molecular beam epitaxy (MBE), with controlled erbium concentration down to 2 parts per million (ppm). We carry out a detailed microstructural study to verify the CeO2_2 host structure, and characterize the spin and optical properties of the embedded Er3+^{3+} ions. In the 2-3 ppm Er regime, we identify EPR linewidths of 245(1) MHz, optical inhomogeneous linewidths of 9.5(2) GHz, optical excited state lifetimes of 3.5(1) ms, and spectral diffusion-limited homogenoeus linewidths as narrow as 4.8(3) MHz in the as-grown material. We test annealing of the Er:CeO2_2 films up to 900 deg C, which yields modest narrowing of the inhomogeneous linewidth by 20% and extension of the excited state lifetime by 40%. We have also studied the variation of the optical properties as a function of Er doping and find that the results are consistent with the trends expected from inter-dopant charge interactions.Comment: 15 pages, 6 figures (including supplemental information

    Optical and microstructural characterization of Er3+ doped epitaxial cerium oxide on silicon

    No full text
    Rare-earth ion dopants in solid-state hosts are ideal candidates for quantum communication technologies, such as quantum memories, due to the intrinsic spin–photon interface of the rare-earth ion combined with the integration methods available in the solid state. Erbium-doped cerium oxide (Er:CeO2) is a particularly promising host material platform for such a quantum memory, as it combines the telecom-wavelength (∼1.5μm) 4f–4f transition of erbium, a predicted long electron spin coherence time when embedded in CeO2, and a small lattice mismatch with silicon. In this work, we report on the epitaxial growth of Er:CeO2 thin films on silicon using molecular beam epitaxy, with controlled erbium concentration between 2 and 130 parts per million (ppm). We carry out a detailed microstructural study to verify the CeO2 host structure and characterize the spin and optical properties of the embedded Er3+ ions as a function of doping density. In as-grown Er:CeO2 in the 2–3 ppm regime, we identify an EPR linewidth of 245(1) MHz, an optical inhomogeneous linewidth of 9.5(2) GHz, an optical excited state lifetime of 3.5(1) ms, and a spectral diffusion-limited homogeneous linewidth as narrow as 4.8(3) MHz. We test the annealing of Er:CeO2 films up to 900 °C, which yields narrowing of the inhomogeneous linewidth by 20% and extension of the excited state lifetime by 40%
    corecore