34 research outputs found

    Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina

    Get PDF
    In most cases, gauged river flow records in southern South America extend for only a few decades, hampering the detection of long-term, decadal to centennial-scale cycles and trends. Long streamflow series can be reconstructed from tree-ring records, offering the opportunity of extending the limited hydrological instrumental data to several centuries. In northern Patagonia, Argentina, the Neuquén River has great importance for local and national socio-economic activities such as hydroelectric power generation, agriculture and tourism. In this study, new and updated tree-ring chronologies from Araucaria araucana and Austrocedrus chilensis are used to reconstruct the October-June mean streamflow for the Neuquén River and place the period of gauged flows (1903-2009), in a long-term, multi-century context. The reconstruction covers the period 1346-2000 AD and was developed from a network of 43 tree-ring chronologies, grouped in composite series, using a nested principal component regression approach. Analyses of the frequency, intensity, and duration of droughts and pluvial events indicate that the 20th century contains some of the driest and wettest annual to decadal-scale events in the last 654 yr, but longer and more severe events were recorded in previous centuries. Blackman-Tukey and singular spectral analyses identified quasiperiodic oscillations from 3.5 to 17.5 yr. A dominant 6.8-yr cycle explains ca. 23.6% of the total variance in the Neuquén River streamflow reconstruction. Correlation analyses showed that discharges of the Neuquén River are related to variations in the Southern Annular Mode (SAM), a measure of air mass exchanges between middle and high latitudes in the Southern Hemisphere. This association is consistent with previous studies that indicate a strong correlation between rainfall in northern Patagonia and SAM variations.Facultad de Ciencias Agrarias y Forestale

    Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina

    Get PDF
    In most cases, gauged river flow records in southern South America extend for only a few decades, hampering the detection of long-term, decadal to centennial-scale cycles and trends. Long streamflow series can be reconstructed from tree-ring records, offering the opportunity of extending the limited hydrological instrumental data to several centuries. In northern Patagonia, Argentina, the Neuquén River has great importance for local and national socio-economic activities such as hydroelectric power generation, agriculture and tourism. In this study, new and updated tree-ring chronologies from Araucaria araucana and Austrocedrus chilensis are used to reconstruct the October-June mean streamflow for the Neuquén River and place the period of gauged flows (1903-2009), in a long-term, multi-century context. The reconstruction covers the period 1346-2000 AD and was developed from a network of 43 tree-ring chronologies, grouped in composite series, using a nested principal component regression approach. Analyses of the frequency, intensity, and duration of droughts and pluvial events indicate that the 20th century contains some of the driest and wettest annual to decadal-scale events in the last 654 yr, but longer and more severe events were recorded in previous centuries. Blackman-Tukey and singular spectral analyses identified quasiperiodic oscillations from 3.5 to 17.5 yr. A dominant 6.8-yr cycle explains ca. 23.6% of the total variance in the Neuquén River streamflow reconstruction. Correlation analyses showed that discharges of the Neuquén River are related to variations in the Southern Annular Mode (SAM), a measure of air mass exchanges between middle and high latitudes in the Southern Hemisphere. This association is consistent with previous studies that indicate a strong correlation between rainfall in northern Patagonia and SAM variations.Facultad de Ciencias Agrarias y Forestale

    Detecting One-Hundred-Year Environmental Changes in Western China Using Seven-Year Repeat Photography

    Get PDF
    Due to its diverse, wondrous plants and unique topography, Western China has drawn great attention from explorers and naturalists from the Western World. Among them, Ernest Henry Wilson (1876 –1930), known as ‘Chinese’ Wilson, travelled to Western China five times from 1899 to 1918. He took more than 1,000 photos during his travels. These valuable photos illustrated the natural and social environment of Western China a century ago. Since 1997, we had collected E.H. Wilson's old pictures, and then since 2004, along the expedition route of E.H. Wilson, we took 7 years to repeat photographing 250 of these old pictures. Comparing Wilson's photos with ours, we found an obvious warming trend over the 100 years, not only in specific areas but throughout the entire Western China. Such warming trend manifested in phenology changes, community shifts and melting snow in alpine mountains. In this study, we also noted remarkable vegetation changes. Out of 62 picture pairs were related to vegetation change, 39 indicated vegetation has changed to the better condition, 17 for degraded vegetation and six for no obvious change. Also in these photos at a century interval, we found not only rapid urbanization in Western China, but also the disappearance of traditional cultures. Through such comparisons, we should not only be amazed about the significant environmental changes through time in Western China, but also consider its implications for protecting environment while meeting the economic development beyond such changes

    Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century

    Get PDF
    South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions

    Extending glacier monitoring into the Little Ice Age and beyond

    Full text link
    Reconstructions of glacier front variations based on well-dated historical evidence from the Alps, Scandinavia, and the southern Andes, extend the observational record as far back as the 16th century. The standardized compilation of paleo-glacier length changes is now an integral part of the internationally coordinated glacier monitoring system

    Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes

    Get PDF
    Glaciers in the northern Patagonian Andes (35–46° S) have shown a dramatic decline in area in the last decades. However, little is known about glacier mass balance changes in this region. This study presents a geodetic mass balance estimate of Monte Tronador (41.15° S; 71.88° W) glaciers by comparing a PlĂ©iades digital elevation model (DEM) acquired in 2012 with the Shuttle Radar Topography Mission (SRTM) X-band DEM acquired in 2000. We find a slightly negative Monte-Tronador-wide mass budget of −0.17 m w.e. a−1 (ranging from −0.54 to 0.14 m w.e. a−1 for individual glaciers) and a slightly negative trend in glacier extent (−0.16 % a−1) over the 2000–2012 period. With a few exceptions, debris-covered valley glaciers that descend below a bedrock cliff are losing mass at higher rates, while mountain glaciers with termini located above this cliff are closer to mass equilibrium. Climate variations over the last decades show a notable increase in warm season temperatures in the late 1970s but limited warming afterwards. These warmer conditions combined with an overall drying trend may explain the moderate ice mass loss observed at Monte Tronador. The almost balanced mass budget of mountain glaciers suggests that they are probably approaching a dynamic equilibrium with current (post-1977) climate, whereas the valley glaciers tongues will continue to retreat. The slightly negative overall mass budget of Monte Tronador glaciers contrasts with the highly negative mass balance estimates observed in the Patagonian ice fields further south

    Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina

    Get PDF
    In most cases, gauged river flow records in southern South America extend for only a few decades, hampering the detection of long-term, decadal to centennial-scale cycles and trends. Long streamflow series can be reconstructed from tree-ring records, offering the opportunity of extending the limited hydrological instrumental data to several centuries. In northern Patagonia, Argentina, the Neuquén River has great importance for local and national socio-economic activities such as hydroelectric power generation, agriculture and tourism. In this study, new and updated tree-ring chronologies from <i>Araucaria araucana</i> and <i>Austrocedrus chilensis</i> are used to reconstruct the October-June mean streamflow for the Neuquén River and place the period of gauged flows (1903-2009), in a long-term, multi-century context. The reconstruction covers the period 1346-2000 AD and was developed from a network of 43 tree-ring chronologies, grouped in composite series, using a nested principal component regression approach. Analyses of the frequency, intensity, and duration of droughts and pluvial events indicate that the 20th century contains some of the driest and wettest annual to decadal-scale events in the last 654 yr, but longer and more severe events were recorded in previous centuries. Blackman-Tukey and singular spectral analyses identified quasiperiodic oscillations from 3.5 to 17.5 yr. A dominant 6.8-yr cycle explains ca. 23.6% of the total variance in the Neuquén River streamflow reconstruction. Correlation analyses showed that discharges of the Neuquén River are related to variations in the Southern Annular Mode (SAM), a measure of air mass exchanges between middle and high latitudes in the Southern Hemisphere. This association is consistent with previous studies that indicate a strong correlation between rainfall in northern Patagonia and SAM variations.Facultad de Ciencias Agrarias y Forestale

    Dendroclimatological reconstructions in South America: A review, Palaeogeogr

    No full text
    Recent years have seen a consolidation and expansion of tree-ring sample collection across South America. Most collections are concentrated in the temperate forests along the eastern and western slopes of the Southern Andes (32°S to 55°S). However, important advances in the reconnaissance and collection of new woody species useful for dendrochronology have recently been documented in new regions. The development of chronologies in tropical and subtropical arid regions of the Cordillera, and in particular the Bolivian Altiplano, is probably one of the most important recent advances in South American dendrochronology. Polylepis tarapacana, growing at 4000-4500 m elevation on the Altiplano, has yielded more than ten chronologies spanning the past 700 years. These records are highly correlated with summer variations in climate. The development of chronologies in the humid subtropics and tropics remains a major challenge. The number of tree-ring chronologies built up using species from these regions (ca. 40) is comparatively low in relation to the extent of tropical forests. The recognition of strong climate signals in tree rings from Cedrela species provides a unique opportunity to develop a tree-ring network in subtropical and tropical South America. The future of dendroclimatology in South American tropical regions is perceived as extremely promising. Reconstructions of temperature, rainfall, streamflow, snow and regional atmospheric circulation based on ring width, density and stable isotopes, have been conducted using tree-ring chronologies from subtropical and temperate forests. These chronologies have also been used in studies relating South American tree rings to high-resolution proxies from other continents, and studies analyzing past changes in atmospheric circulation. The comparison of climatic reconstructions based on tree rings with projected atmospheric circulation patterns provides a useful bridge between past and future trends in global climate change, and its implications for human welfare and socio-economic development. Some examples of this bridging are presented in this review. Future research should continue the development of long tree-ring chronologies to improve detection of decadal to centennial climatic variations and to distinguish between natural and human-induced climatic changes in South America. Efforts to develop new tree-ring chronologies in the tropical lowlands should also be encouraged. Collaboration among South American countries in training young scholars is crucial to maintain and increase the progress of dendroclimatology in the region. Initiatives facilitating the interaction between scientists from the Americas and overseas, such as done by the IAI and PAGES projects, should be broadened and their long-term continuation assured
    corecore