7 research outputs found

    Medium-energy ion reflection from solids

    No full text
    ``Medium-Energy Ion Reflection from Solids'' analyses the results of experimental, theoretical and computer investigations on the process of scattering of ions by solid surfaces. Surface scattering is a relatively young and rapidly developing branch of the physics of atomic collisions and the literature on this subject has rapidly grown.As the first monograph devoted specifically to surface scattering of ions, this book is directed at scientists involved in ion-solid interaction studies

    TEM and HREM of diamond crystals grown on Si tips: structure and results of ion-beam-treatment.

    No full text
    Diamond single crystals were grown on the silicon whiskers by a hot filament chemical vapor deposition technique at the filament temperature about 2100 degrees C and the temperature of support 800 degrees C. Specimens were examined by SEM, TEM, HRTEM and SAED. When the filament temperature was about 1900 degrees C globular polycrystalline diamond particles were grown. At a support temperature more then 800 degrees C SiC nanoparticles were formed. To investigate the ion etching process of the silicon tip/diamond system, tips were treated with an Ar(+) beam with energy up to 30 kV. The results depend on fluence: at 4 x 10(18)ion/cm(2) diamonds and partially Si tips were destroyed, amorphous layer was formed (sometimes with nanometric size fragments of diamond); at 1 x 10(18)ion/cm(2) sharpened diamonds (radius of curvature about 20 nm) covered with amorphous layer (radius about 80 nm) probably with nanoclusters of diamond were observed; at 4.4 x 10(17) ion/cm(2) there was no visible tip sharpening but formation of amorphous thick layer occurred. The emission characteristics of Si tips covered with diamond were improved due to ion treatment. Since such tips in our case were covered with amorphous layer containing nanometric size fragments of diamond, we suppose this layer is responsible for electron emission improvement

    Interaction of Low-Energy Ions, Atoms and Molecules with Surfaces

    No full text
    corecore