12 research outputs found

    Applications of polystyrene/graphite composites in water purification as a semiconductor visible-light photocatalyst for organic pollutant degradation

    No full text
    The aim of this study was to prepare a polymer/graphite composite thin film as a cheap, and nontoxic photocatalyst that could be activated by visible light. It was characterized using ultraviolet/visible spectrophotometry and X-ray diffraction. Scanning electron microscopy was used to examine the photocatalyst surface before and after a photodegradation process. The photocatalyst showed activity under visible light and was used for the photodegradation of methylene blue (MB) and rhodamine B (Rh-B) as target pollutants. The process was studied with different pH values, initial dye concentrations, and light intensities from the radiation source to evaluate their effects. The results revealed that the photodegradation was affected by the initial dye concentration, and also showed that the best conditions for the photodegradation reactions of both dyes were an alkaline medium and a light intensity of 80 wt. The films prepared under the conditions reported herein could be promising materials in water purification. Keywords: Photocatalyst, Photodegradation, Rhodamine B, Methylene blu

    Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment

    No full text
    In this study, date palm waste that was naturally treated as a filler in a linear-low density polyethylene (LLDPE) matrix was recycled to prepare green composites. Two types of LLDPE, based on basic additives, were used. UV stabilizer and the slip and anti-block were added as basic additives. The objective of this study was to examine the effect of these basic additives and the treated filler on the biodegradation, morphological, and thermal properties of the prepared samples by a soil burial test. The samples were characterized by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Weight loss was calculated to investigate the biodegradation of the sample, and SEM and thermogravimetric analyses were performed to reveal the morphology and thermal properties before and after burial, respectively. Results showed that the presence of the bio-filler accelerated the biodegradation of the composites. The UV stabilizer had a positive impact on biodegradation factors whereas anti-block additives appeared resistant to biodegradable factors. The morphology and thermal stability of all the prepared samples changed after burial due to the effects of biodegradation during the burial. Keywords: Polymer composites, Soil burial, Date palm, Linear low-density polyethylene, Biodegradatio

    Effect of cationic-surfactant-modified Saudi bentonite on the thermal and flammability properties of poly(vinyl alcohol)-based nanocomposite films

    No full text
    In this study, poly(vinyl alcohol) (PVA)-modified Saudi bentonite nanocomposite films were prepared using the solution method. Two surfactants, cetylpyridinium chloride and tetrabutyl phosphonium bromide, were used to modify the clay after the ion-exchange process by Na+ ions. The effect of the addition of modified Saudi bentonite (2.5%) on the thermal and flammability properties of the nanocomposite films was investigated. The prepared samples were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Thermogravimetric analysis and differential scanning calorimetry were carried out to observe the thermal behaviour of the PVA-based nanocomposite films. Vertical flammability tests (UL94 VB) were also carried out to study the flame retardancy behaviour of the nanocomposite films. The nanocomposite films showed better flammability than pure PVA, wherein the ignition time of the nanocomposites increased and flame propagation rate decreased. The thermal stability of the nanocomposites increased by approximately 10% for the onset and endset temperature of decomposition. The type of surfactant played an important role in dispersion of the clay into the polymeric matrix and enhancing the flammability properties of the films wherein the tetrabutyl phosphonium bromide was better flame retardant than cetylpyridinium chloride

    Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique

    Get PDF
    The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was 0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energy ΔGο, enthalpy change ΔHο, and entropy ΔSο were calculated. The negative values of ΔGο indicate spontaneous adsorption. The negative value of ΔHο indicates that the interaction between CV and DPF is exothermic, and the positive value of ΔSο indicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model

    An Experimental Study of Photocatalytic Degradation of Congo Red Using Polymer Nanocomposite Films

    No full text
    Eco-friendly polymer nanocomposite films were synthesized using biodegradable polymers of chitosan and polyvinyl alcohol as polymeric matrices and carbon black nanoparticles as the reinforcement. These films were applied to study their applicability to industrial wastewater purification as a photocatalyst for degradation of Congo red as a target pollutant and to study the effect of the polymeric matrix types of the films on their performance as a semiconductor photocatalyst. Fourier-transform infrared (FT-IR) spectra and X-ray diffraction (XRD) were used to characterize the films. Visible light photocatalytic degradation of Congo red as a pollutant under various operational conditions of pH, dye concentration, contact time, and light intensity was performed. Photocatalytic results revealed that the polymeric substrate type does not play a major role in the photodegradation of the dye, and the best operational conditions were at a pH of 6 and a dye solution concentration of 8 mg/L

    Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils

    No full text
    Organic pesticides are major sources of soil pollution in agricultural lands. Most of these pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated plants. In this study, we investigate different natural soil samples that were collected from agricultural lands. The samples revealed the presence of 18 pesticides that belong to four different groups including organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The photocatalytic degradation of the five most abundant pesticides was studied in the presence and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm. The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP), Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was complete under UV radiation for irradiation times between 64–100 h. However, both photocatalysts enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides were photocatalytically degraded completely within 20–24 h of irradiation. The TiO2 photocatalyst showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil. The mechanism of photocatalytic degradation of the pesticides was explained and the effects of different factors on the degradation process in the soil were discussed

    Photo-Catalytic Remediation of Pesticides in Wastewater Using UV/TiO2

    No full text
    One of the most serious environmental concerns worldwide is the consequences of industrial wastes and agricultural usage leading to pesticide residues in water. At present, a wide range of pesticides are used directly to control pests and diseases. However, environmental damage is expected even at their low concentration because they are sustained a long time in nature, which has a negative impact on human health. In this study, photolysis and photocatalysis of the pesticides dieldrin and deltamethrin were tested at two UV wavelengths (254 and 306 nm) and in different test media (distilled water, wastewater, and agricultural wastewater) to examine their ability to eliminate pesticides. TiO2 (0.001 g/10 mL) was used as a catalyst for each treatment. The purpose was to determine the influence of UV wavelength, exposure time, and catalyst addition on the pesticide decomposition processes in different water types. Water was loaded with the tested pesticides (2000 µg) for 12 h under UV irradiation, and the pesticide concentrations were measured at 2 h intervals after UV irradiation. The results showed a clear effect of UV light on the pesticides photodegradations that was both a wavelength- and time-dependent effect. Photolysis was more effective at λ = 306 nm than at λ = 254 nm. Furthermore, TiO2 addition (0.001 g/10 mL) increased the degradation at both tested wavelengths and hence could be considered a potential catalyst for both pesticide degradations. Deltamethrin was more sensitive to UV light than dieldrin under all conditions

    Biosynthesis Effect of Egg White on Formation and Characteristics of NiO/NiCo<sub>2</sub>O<sub>4</sub> Nanocomposites

    No full text
    For the successful production of NiO/NiCo2O4 nanocomposites, the environmentally friendly method of egg white supplementation has been used. Several analytical techniques were employed to characterize the morphology, purity, and crystal structure of the as-prepared nanocomposites. These techniques included transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The physical adsorption and magnetic properties of the investigated composite were determined using the Brunauer–Emmett–Teller (BET) method and a vibrating-sample magnetometer (VSM), respectively. The results have shown that the as-prepared composite particles had diameters of about 10–25 nm, with uniform distribution. The XRD analysis showed that the as-synthesized composites consisted entirely of cubic structures of both NiO and spinel NiCo2O4 nanoparticles, with a space group of Fd3m. The FTIR analysis showed characteristic vibration modes related to metal oxides, confirming the formation of composites containing NiO and NiCo2O4 crystallites. The investigated composites’ saturation magnetization (MS) and coercivity (HC) were easily controllable because of the ingredients’ ferromagnetic (NiCo2O4) and antiferromagnetic (NiO) characteristics. The excellent combination of the NiO/NiCo2O4 nanocomposites’ properties is anticipated to make this system suitable for a wide range of applications

    Impact of Photolysis and TiO2 on Pesticides Degradation in Wastewater

    No full text
    Pesticide residues are harmful to the environment and human and animal health even at low levels because of long-term bioaccumulation. In this study, photolysis was applied to treat three representative water samples: aqueous atrazine and dimethoate solutions as target pesticides, as well as wastewater and agriculture wastewater containing pesticide residue. It was performed using ultraviolet (UV) irradiation at two wavelengths (254 and 306 nm) with exposure times ranging from 2 to 12 h in the presence and absence of a photocatalyst to identify the optimal degradation conditions. Extraction and analyzation process were performed by the Quick Easy Cheap Effective Rugged Safe (QuEChERS) methods and gas chromatography–tandem mass spectrometry with triple quadrupole detector (GC–MSMS/TQD), respectively. Photodegradation increased with an increase in exposure time and the TiO2 catalyst was beneficial for degradation. Both selected irradiation wavelengths were effective, although the wavelength of λ = 306 nm was the most efficient

    Impact of Photolysis and TiO<sub>2</sub> on Pesticides Degradation in Wastewater

    No full text
    Pesticide residues are harmful to the environment and human and animal health even at low levels because of long-term bioaccumulation. In this study, photolysis was applied to treat three representative water samples: aqueous atrazine and dimethoate solutions as target pesticides, as well as wastewater and agriculture wastewater containing pesticide residue. It was performed using ultraviolet (UV) irradiation at two wavelengths (254 and 306 nm) with exposure times ranging from 2 to 12 h in the presence and absence of a photocatalyst to identify the optimal degradation conditions. Extraction and analyzation process were performed by the Quick Easy Cheap Effective Rugged Safe (QuEChERS) methods and gas chromatography–tandem mass spectrometry with triple quadrupole detector (GC–MSMS/TQD), respectively. Photodegradation increased with an increase in exposure time and the TiO2 catalyst was beneficial for degradation. Both selected irradiation wavelengths were effective, although the wavelength of λ = 306 nm was the most efficient
    corecore