23 research outputs found

    Improving Network-on-Chip-based Turbo Decoder Architectures

    Get PDF
    In this work novel results concerning Networkon- Chip-based turbo decoder architectures are presented. Stemming from previous publications, this work concentrates first on improving the throughput by exploiting adaptive-bandwidth-reduction techniques. This technique shows in the best case an improvement of more than 60 Mb/s. Moreover, it is known that double-binary turbo decoders require higher area than binary ones. This characteristic has the negative effect of increasing the data width of the network nodes. Thus, the second contribution of this work is to reduce the network complexity to support doublebinary codes, by exploiting bit-level and pseudo-floatingpoint representation of the extrinsic information. These two techniques allow for an area reduction of up to more than the 40 % with a performance degradation of about 0.2 d

    The adrenal cortex in physiological and pathological aging: issues of clinical relevance

    No full text

    Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30)

    No full text
    The surface density of the triggering receptors (e.g. NKp46 and NKp30) responsible for natural killer (NK) cell-mediated cytotoxicity determines the ability of NK cells to kill susceptible target cells. In this study, we show that prolactin up-regulates and cortisol down-regulates the surface expression of NKp46 and NKp30. The prolactin-mediated activation and the cortisol-mediated inhibition of natural cytotoxicity receptor (NCR) surface expression reflects gene regulation at the transcriptional level. NKp46 and NKp30 are the major receptors involved in the NK-mediated killing of K562, a human chronic myelogenous leukaemia cell line. Accordingly, the prolactin dramatically increased the NK-mediated killing of the K562 cell line, whereas cortisol abolished this activity. Our data suggest a mechanism by which prolactin activates the lytic function of NK cells, and cortisol inhibits the NK-mediated attack
    corecore