38 research outputs found

    On a simple strategy weakly forcing the strong law of large numbers in the bounded forecasting game

    Full text link
    In the framework of the game-theoretic probability of Shafer and Vovk (2001) it is of basic importance to construct an explicit strategy weakly forcing the strong law of large numbers (SLLN) in the bounded forecasting game. We present a simple finite-memory strategy based on the past average of Reality's moves, which weakly forces the strong law of large numbers with the convergence rate of O(logn/n)O(\sqrt{\log n/n}). Our proof is very simple compared to a corresponding measure-theoretic result of Azuma (1967) on bounded martingale differences and this illustrates effectiveness of game-theoretic approach. We also discuss one-sided protocols and extension of results to linear protocols in general dimension.Comment: 14 page

    Conformal Geometry of Sequential Test in Multidimensional Curved Exponential Family

    Full text link
    This article presents a differential geometrical method for analyzing sequential test procedures. It is based on the primal result on the conformal geometry of statistical manifold developed in Kumon, Takemura and Takeuchi (2011). By introducing curvature-type random variables, the condition is first clarified for a statistical manifold to be an exponential family under an appropriate sequential test procedure. This result is further elaborated for investigating the efficient sequential test in a multidimensional curved exponential family. The theoretical results are numerically examined by using von Mises-Fisher and hyperboloid models

    A new formulation of asset trading games in continuous time with essential forcing of variation exponent

    Full text link
    We introduce a new formulation of asset trading games in continuous time in the framework of the game-theoretic probability established by Shafer and Vovk (Probability and Finance: It's Only a Game! (2001) Wiley). In our formulation, the market moves continuously, but an investor trades in discrete times, which can depend on the past path of the market. We prove that an investor can essentially force that the asset price path behaves with the variation exponent exactly equal to two. Our proof is based on embedding high-frequency discrete-time games into the continuous-time game and the use of the Bayesian strategy of Kumon, Takemura and Takeuchi (Stoch. Anal. Appl. 26 (2008) 1161--1180) for discrete-time coin-tossing games. We also show that the main growth part of the investor's capital processes is clearly described by the information quantities, which are derived from the Kullback--Leibler information with respect to the empirical fluctuation of the asset price.Comment: Published in at http://dx.doi.org/10.3150/08-BEJ188 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Capital process and optimality properties of a Bayesian Skeptic in coin-tossing games

    Full text link
    We study capital process behavior in the fair-coin game and biased-coin games in the framework of the game-theoretic probability of Shafer and Vovk (2001). We show that if Skeptic uses a Bayesian strategy with a beta prior, the capital process is lucidly expressed in terms of the past average of Reality's moves. From this it is proved that the Skeptic's Bayesian strategy weakly forces the strong law of large numbers (SLLN) with the convergence rate of O(\sqrt{\log n/n})$ and if Reality violates SLLN then the exponential growth rate of the capital process is very accurately described in terms of the Kullback divergence between the average of Reality's moves when she violates SLLN and the average when she observes SLLN. We also investigate optimality properties associated with Bayesian strategy
    corecore