91 research outputs found
Singularity-free Aerial Deformation by Two-dimensional Multilinked Aerial Robot with 1-DoF Vectorable Propeller
Two-dimensional multilinked structures can benefit aerial robots in both
maneuvering and manipulation because of their deformation ability. However,
certain types of singular forms must be avoided during deformation. Hence, an
additional 1 Degrees-of-Freedom (DoF) vectorable propeller is employed in this
work to overcome singular forms by properly changing the thrust direction. In
this paper, we first extend modeling and control methods from our previous
works for an under-actuated model whose thrust forces are not unidirectional.
We then propose a planning method for the vectoring angles to solve the
singularity by maximizing the controllability under arbitrary robot forms.
Finally, we demonstrate the feasibility of the proposed methods by experiments
where a quad-type model is used to perform trajectory tracking under
challenging forms, such as a line-shape form, and the deformation passing these
challenging forms
Recommended from our members
Combinational Treatment of Trichostatin A and Vitamin C Improves the Efficiency of Cloning Mice by Somatic Cell Nuclear Transfer.
Somatic cell nuclear transfer (SCNT) provides a unique opportunity to directly produce a cloned animal from a donor cell, and it requires the use of skillful techniques. Additionally, the efficiencies of cloning have remained low since the successful production of cloned animals, especially mice. There have been many attempts to improve the cloning efficiency, and trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to enhance the efficiency of cloning. Here, we report a dramatically improved cloning method in mice. This somatic cell nuclear transfer method involves usage of Hemagglutinating virus of Japan Envelope (HVJ-E), which enables easy manipulation. Moreover, the treatment using two small molecules, TSA and vitamin C (VC), with deionized bovine serum albumin (dBSA), is highly effective for embryonic development. This approach requires neither additional injection nor genetic manipulation, and thus presents a simple, suitable method for practical use. This method could become a technically feasible approach for researchers to produce genetically modified animals from cultured cells. Furthermore, it might be a useful way for the rescue of endangered animals via cloning
Versatile Multilinked Aerial Robot with Tilting Propellers: Design, Modeling, Control and State Estimation for Autonomous Flight and Manipulation
Multilinked aerial robot is one of the state-of-the-art works in aerial
robotics, which demonstrates the deformability benefiting both maneuvering and
manipulation. However, the performance in outdoor physical world has not yet
been evaluated because of the weakness in the controllability and the lack of
the state estimation for autonomous flight. Thus we adopt tilting propellers to
enhance the controllability. The related design, modeling and control method
are developed in this work to enable the stable hovering and deformation.
Furthermore, the state estimation which involves the time synchronization
between sensors and the multilinked kinematics is also presented in this work
to enable the fully autonomous flight in the outdoor environment. Various
autonomous outdoor experiments, including the fast maneuvering for interception
with target, object grasping for delivery, and blanket manipulation for
firefighting are performed to evaluate the feasibility and versatility of the
proposed robot platform. To the best of our knowledge, this is the first study
for the multilinked aerial robot to achieve the fully autonomous flight and the
manipulation task in outdoor environment. We also applied our platform in all
challenges of the 2020 Mohammed Bin Zayed International Robotics Competition,
and ranked third place in Challenge 1 and sixth place in Challenge 3
internationally, demonstrating the reliable flight performance in the fields
Inkjet printed intelligent reflecting surface (IRS) for indoor applications
A passive, low-cost, paper-based intelligent reflecting surface (IRS) is
designed to reflect a signal in a desired direction to overcome
non-line-of-sight scenarios in indoor environments. The IRS is fabricated using
conductive silver ink printed on a paper with a specific nanoparticle
arrangement, yielding a cost effective paper-based IRS that can easily be
mass-produced. Full-wave numerical simulation results were consistent with
measurements results, demonstrating the IRS's ability to reflect incident wave
into a desired nonspecular direction based on the inkjet-printed design and
materials
A Clinical Evaluation of a Plastic Temporary Filling Material (Dura Seal®)
Recently Dura Seal, a kind of plastic, has been marketed as a temporary filling material. This clinical study was done to determine whether or not Dura Seal has the properties advertised by the manufacturer. A total of 135 teeth, including 110 vital teeth and 25 pulpless teeth, were prepared for metal inlay cavities. The prepared cavities were sealed with Dura Seal for an average of 12.0 days. Dura Seal was found to be easily removable, to show no pulp damage, and to have considerable mechanical strength
Bortezomib-cyclophosphamide-dexamethasone induction/consolidation and bortezomib maintenance for transplant-eligible newly diagnosed multiple myeloma: phase 2 multicenter trial
[Objectives:] We conducted a phase II trial to prospectively evaluate the efficacy and safety of bortezomib-cyclophosphamide-dexamethasone (VCD) induction, autologous stem cell transplantation (ASCT), VCD consolidation, and bortezomib maintenance in transplant-eligible newly diagnosed multiple myeloma (NDMM) patients in Japan (UMIN000010542). [Methods:] From 2013 to 2016, 42 patients with a median age of 58 (range 42–65) years with NDMM were enrolled in 15 centers. The primary endpoint was the complete response (CR) /stringent CR (sCR) rate after transplantation, and overall/progression-free survival rates were also evaluated. [Results:] Following induction therapy, the overall response rate was obtained in 71% of patients, including a CR/sCR of 10% and a very good partial response (VGPR) of 26%. Twenty-six of the 42 patients completed ASCT following the protocol and CR/sCR and VGPR rate 100 days after ASCT was 26% and 17%, respectively. During consolidation therapy, 3 of the 24 patients achieved deeper responses. Eight of the 18 patients completed 2-year bortezomib maintenance without disease progression and grade 3/4 toxicities. Five patients were VGPR or partial response after ASCT but maintained response with 2-year bortezomib maintenance. Two-year overall and progression-free survival rates were 92.5% (95% confidence interval [CI]: 78.5%−97.5%) and 62.6% (95% CI: 45.8%−75.5%), respectively. Grade 3/4 toxicities (≥ 10%) included neutropenia (19%) and anemia (17%) in induction, and thrombocytopenia (29%) in consolidation. [Conclusion:] VCD induction/consolidation and bortezomib maintenance with ASCT for NDMM resulted in a high CR/sCR rate and provided good overall/progression-free survival in Japan
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
- …