61 research outputs found
Bevacizumab terminates homeobox B9-induced tumor proliferation by silencing microenvironmental communication
Background: Homeobox B9 (HOXB9), a transcriptional factor, regulates developmental processes and tumor progression and has recently been recognized as one of important transcriptional factors related to angiogenesis. This study aimed to investigate the role of HOXB9 in tumorigenesis and angiogenesis. Methods: We examined the expression of HOXB9 in colorectal cancer using qPCR and in situ hybridization. We also examined the effect of HOXB9 overexpression in colorectal cancer using a proliferation assay, ELISA, a multiplex assay, and xenograft models. The clinical significance of HOXB9 was statistically evaluated in resected specimens. Results: HOXB9 was expressed in colorectal cancer specimens. HOXB9 induced angiogenesis and tumor proliferation in vitro, which resulted in high tumorigenicity in vivo and poor overall survival. Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, remarkably suppressed tumor proliferation by inhibiting angiogenesis in HOXB9-overexpressing xenografts, and it improved overall survival and provided prolonged progression-free survival in HOXB9-overexpressing patients. A comprehensive multiplex assay of the supernatant of cancer cells co-cultured with human vascular endothelial cells and fibroblasts indicated significantly higher interleukin-6 (IL6) levels than those in the supernatant of monocultured cells. HOXB9 overexpression in clinical specimens was significantly correlated with increased IL6 expression. An IL6-neutralizing antibody inhibited VEGF secretion and tumor proliferation in the co-culture system. Conclusions: HOXB9 promotes the secretion of angiogenic factors, including VEGF, to induce tumor proliferation through microenvironmental production of cytokines including IL6 signaling. Moreover, silencing of VEGF or IL6 terminates cytokine release in tumor microenvironment. Thus, HOXB9 and IL6 may be potential biomarkers for bevacizumab treatment
Open Access
Bevacizumab terminates homeobox B9-induced tumor proliferation by silencing microenvironmental communicatio
Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice
Analyses of energy metabolism in human cancer have been difficult because of rapid turnover of the metabolites and difficulties in reducing time for collecting clinical samples under surgical procedures. Utilization of xenograft transplantation of human-derived colon cancer HCT116 cells in spleens of superimmunodeficient NOD/SCID/IL-2Rγnull (NOG) mice led us to establish an experimental model of hepatic micrometastasis of the solid tumor, whereby analyses of the tissue sections collected by snap-frozen procedures through newly developed microscopic imaging mass spectrometry (MIMS) revealed distinct spatial distribution of a variety of metabolites. To perform intergroup comparison of the signal intensities of metabolites among different tissue sections collected from mice in fed states, we combined matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI–TOF-IMS) and capillary electrophoresis–mass spectrometry (CE–MS), to determine the apparent contents of individual metabolites in serial tissue sections. The results indicated significant elevation of ATP and energy charge in both metastases and the parenchyma of the tumor-bearing livers. To note were significant increases in UDP-N-acetyl hexosamines, and reduced and oxidized forms of glutathione in the metastatic foci versus the liver parenchyma. These findings thus provided a potentially important method for characterizing the properties of metabolic systems of human-derived cancer and the host tissues in vivo
Five doses of the mRNA vaccination potentially suppress ancestral-strain stimulated SARS-CoV2-specific cellular immunity: a cohort study from the Fukushima vaccination community survey, Japan
The bivalent mRNA vaccine is recommended to address coronavirus disease variants, with additional doses suggested for high-risk groups. However, the effectiveness, optimal frequency, and number of doses remain uncertain. In this study, we examined the long-term cellular and humoral immune responses following the fifth administration of the mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients undergoing hemodialysis. To our knowledge, this is the first study to monitor long-term data on humoral and cellular immunity dynamics in high-risk populations after five doses of mRNA vaccination, including the bivalent mRNA vaccine. Whereas most patients maintained humoral immunity throughout the observation period, we observed reduced cellular immune reactivity as measured by the ancestral-strain-stimulated ELISpot assay in a subset of patients. Half of the individuals (50%; 14/28) maintained cellular immunity three months after the fifth dose, despite acquiring humoral immunity. The absence of a relationship between positive controls and T-Spot reactivity suggests that these immune alterations were specific to SARS-CoV-2. In multivariable analysis, participants aged ≥70 years showed a marginally significant lower likelihood of having reactive results. Notably, among the 14 individuals who received heterologous vaccines, 13 successfully acquired cellular immunity, supporting the effectiveness of this administration strategy. These findings provide valuable insights for future vaccination strategies in vulnerable populations. However, further research is needed to evaluate the involvement of immune tolerance and exhaustion through repeated vaccination to optimize immunization strategies
Group of longitudinal adverse event patterns after the fourth dose of COVID-19 vaccination with a latent class analysis
IntroductionVaccination has been implemented as a useful measure to combat the COVID-19 pandemic. However, there is a tendency for individuals to avoid vaccination due to the possibility of adverse events, making it important to investigate the relationship between COVID-19 vaccines and their adverse events. This study explored longitudinal adverse event patterns and factors that influence adverse events following the second to fourth doses of the COVID-19 vaccine through a latent class analysis.MethodsParticipants were recruited from the Fukushima Prefecture and included individuals who had completed four doses of the COVID-19 mRNA vaccine. This study utilized data from questionnaire surveys and blood collection conducted between September 2021 and November 2022. In the questionnaire, factors such as sex, age, medical history, medication, type of vaccine administered, and adverse events following vaccination were recorded. Additionally, in the blood data, serological tests [IgG(S)] and cellular immune responses (T-spot) were measured. Descriptive statistics, latent class analysis, multivariable logistic regression, and multiple regression analyses were performed to identify the longitudinal adverse event patterns and influencing factors. By analyzing adverse events over time, we identified two distinct groups: those less prone to experiencing adverse events (Group 1) and those more susceptible (Group 2) to latent class analysis.ResultsA total of 1,175 participants were included after excluding those without any adverse events. The median age of the participants in Group 1 was 70 years, and in Group 2 it was 51 years. The proportion of female participants was 298 in Group 1 and 353 in Group 2. Patients in Group 2 were significantly younger (p < 0.001) and more likely to be female (p < 0.001) than those in Group 1. Furthermore, the median IgG(S) value after the fourth vaccination was 3,233 AU/mL in Group 1 and 4,059.39 AU/mL in Group 2. The median T-spot value was 15.4 in Group 1 and 28.5 in Group 2. Group 2 showed significantly higher IgG(S) and T-spot values after the fourth vaccination (p < 0.001).DiscussionOur findings suggest that factors other than age, particularly sex and a history of allergies, significantly influence the likelihood of experiencing adverse events. Groups categorized by latent class analysis for longitudinal adverse events are expected to be valuable for optimizing vaccination strategies and formulating public health measures
Diminished neutralizing activity against the XBB1.5 strain in 55.9% of individuals post 6 months COVID-19 mRNA booster vaccination: insights from a pseudovirus assay on 1,353 participants in the Fukushima vaccination community survey, Japan
This study investigates the neutralizing activity against the XBB1.5 variant and the ancestral strain in a population post-bivalent vaccination using a pseudo virus assay validated with authentic virus assay. While bivalent booster vaccination and past infections enhanced neutralization against the XBB 1.5 strain, individuals with comorbidities showed reduced responses. The study suggests the need for continuous vaccine updates to address emerging SARS-CoV-2 variants and highlights the importance of monitoring real-world immune responses
Adjuvants that Enhance Th2 or Tr Responses
It is well-known that many isoforms of toll-like receptors (TLRs) function as Th1 adjuvant receptors. Thus, the ligands induce Th1 differentiation in an antigen non-specific manner. During the past few years, not only Th1, but also Th2 adjuvants have been reported. Allergy-inducing materials, such as parasites, first stimulate dendritic cells (DCs) to change their character as professional antigen-presenting cells. Such a DC population (DC2) can stimulate naive CD4T cells to induce differentiation into Th2. In some instances, DCs that can stimulate regulatory T cells are also induced. Interestingly, many of such substances are glycolipids or phospholipids that mammalian species do not usually carry. In this paper, we show a cellular and molecular basis for Th2 adjuvants
- …